Computational Mechanics

, Volume 43, Issue 1, pp 143–150 | Cite as

NURBS-based isogeometric analysis for the computation of flows about rotating components

Original Paper

Abstract

The ability of non-uniform rational B-splines (NURBS) to exactly represent circular geometries makes NURBS-based isogeometric analysis attractive for applications involving flows around and/or induced by rotating components (e.g., submarine and surface ship propellers). The advantage over standard finite element discretizations is that rotating components may be introduced into a stationary flow domain without geometric incompatibility. Although geometric compatibility is exactly achieved, the discretization of the flow velocity and pressure remains incompatible at the interface between the stationary and rotating subdomains. This incompatibility is handled by using a weak enforcement of the continuity of solution fields at the interface of the stationary and rotating subdomains.

Keywords

Fluids Navier–Stokes equations Rotating components NURBS Isogeometric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41: 371–378CrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of Discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749–1779MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barenblatt GI (1979) Similarity, self-similarity, and intermediate assymptotics. Consultants Bureau, Plenum Press, New York and LondonGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16: 1031–1090MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196: 4853–4862CrossRefMathSciNetGoogle Scholar
  9. 9.
    Behr M, Tezduyar T (1999) Shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274MATHCrossRefGoogle Scholar
  10. 10.
    Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200MATHCrossRefGoogle Scholar
  11. 11.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–75MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cohen E, Riesenfeld R, Elber G (2001) Geometric modeling with splines: an introduction. A. K. Peters Ltd, WellesleyMATHGoogle Scholar
  14. 14.
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195: 5257–5297MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, BerlinMATHGoogle Scholar
  16. 16.
    Farin GE (1995) NURBS curves and surfaces: from projective geometry to practical use. A. K. Peters, Ltd, NatickGoogle Scholar
  17. 17.
    Hansbo P, Hermansson J (2003) Nitsche’s method for coupling non-matching meshes in fluid–structure vibration problems. Comput Mech 32: 134–139MATHCrossRefGoogle Scholar
  18. 18.
    Hansbo P, Hermansson J, Svedberg T (2004) Nitsche’s method combined with space-time finite elements for ALE fluid–structure interaction problems. Comput Methods Appl Mech Eng 193: 4195–4206MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Houzeaux G, Codina R (2003) A chimera method based on a Dirichlet/Neumann (Robin) coupling for the Navier–Stokes equations. Comput Methods Appl Mech Eng 192: 3343–3377MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hughes TJR, Feijóo G, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24MATHCrossRefGoogle Scholar
  21. 21.
    Hughes TJR, Mallet M (1986) A new finite element formulation for fluid dynamics. III. The generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58: 305–328MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45: 539–557MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319CrossRefMathSciNetGoogle Scholar
  25. 25.
    Piegl L, Tiller W (1997) The NURBS book (Monographs in visual communication), 2nd edn. Springer, New YorkGoogle Scholar
  26. 26.
    Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, San DiegoGoogle Scholar
  27. 27.
    Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89: 141–219CrossRefMathSciNetGoogle Scholar
  28. 28.
    Texas Advanced Computing Center (TACC). http://www.tacc.utexas.edu
  29. 29.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412MATHCrossRefGoogle Scholar
  30. 30.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wheeler MF (1978) An elliptic collocation—finite element method with interior penalties. SIAM J Numer Anal 15: 152–161MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41: 407–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations