Skip to main content
Log in

Improved boundary tracking in meshless simulations of free-surface flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we review the use of shape constructors, particularly α-shapes, for the simulation of free-surface flow problems. This technique, in conjunction with meshless methods, allows for the simulation of such problems in an updated Lagrangian approach without the need for an explicit description of the boundary of the domain. At each time step, the shape of the domain is extracted automatically. However, it is well know that α-shape techniques present some drawbacks. The first is the choice of the α parameter, related to the level of detail to which the domain is represented. Also contact detection of free surfaces (auto-contact) or between the free surface and a rigid boundary, for instance, is often detected with an error of the order \({\mathcal{O}(h)}\) , the nodal spacing parameter, in the gap distance. We propose an heuristic technique for the choice of the α parameter and develop a novel methodology for an improved detection of contact or merging flows. The proposed technique is illustrated with the help of some examples in solid and fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfaro I, Bel D, Cueto E, Doblaré M and Chinesta F (2006a). Three-dimensional simulation of aluminium extrusion by the alpha-shape based natural element method. Comput Methods Appl Mech Eng 195(33–36): 4269–4286

    Article  MATH  Google Scholar 

  2. Alfaro I, Gonzalez D, Bel D, Cueto E, Doblaré M and Chinesta F (2006b). Recent advances in the meshless simulation of aluminium extrusion and other related forming processes. Arch Comput Methods Eng 13(1): 3–44

    Article  MATH  Google Scholar 

  3. Amenta N, Bern M and Eppstein D (1998a). The crust and the beta-skeleton: combinatorial curve reconstruction. Graph Models Image Process 60/2(2): 125–135

    Article  Google Scholar 

  4. Amenta N, Bern M, Kamvysselis M (1998b) A new voronoi-based surface reconstruction algorithm. In: Siggraph 98, pp 415–421

  5. Armstrong CG, Robinson D, McKeag R, Li T, Bridgett S, Donaghy~R, McGleenan C (1995) Medials for meshing and more. In: 4th International Meshing Roundtable. Sandia National Laboratories, pp 277–288

  6. Barber CB, Dobkin DP and Huhdanpaa HT (1996). The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4): 469–483

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Lu YY and Gu L (1994). Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P (1998). Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47

    Article  Google Scholar 

  9. Birknes1 J and Pedersen G (2006). A particle finite element method applied to long wave run-up. Int J Numer Methods Fluids 52: 237–261

    Google Scholar 

  10. Cazals F, Giesen J, Pauly M and Zomorodian A (2006). The conformal alpha-shape filtration. Visual Comput 22(8): 531–540

    Article  Google Scholar 

  11. Cueto E, Doblaré M and Gracia L (2000). Imposing essential boundary conditions in the Natural Element Method by means of density-scaled α-shapes. Int J Numer Methods Eng 49(4): 519–546

    Article  MATH  Google Scholar 

  12. Dey TK, Giesen J, John M (2003) Alpha-shapes and flow shapes are homotopy equivalent. In: Proc. Sympos. Theory Computing (STOC 2003), pp 493–502

  13. Edelsbrunner H and Mücke E (1994). Three dimensional alpha shapes. ACM Trans Graph 13: 43–72

    Article  MATH  Google Scholar 

  14. Edelsbrunner H, Kirkpatrick DG and Seidel R (1983). On the shape of a set of points in the plane. IEEE Trans Inform Theory IT 29(4): 551–559

    Article  MathSciNet  MATH  Google Scholar 

  15. Giesen J, John M (2003) The flow complex: a data structure for geometric modelling. In: Proceedings of the 14th Annual ACM-SIAM symposium on Discrete Algorithms, pp 285–294

  16. Gonzalez D, Cueto E, Martinez MA and Doblaré M (2004). Numerical integration in natural neighbour Galerkin methods. Int J Numer Methods Eng 60(12): 2077–2104

    Article  MATH  Google Scholar 

  17. González D, Cueto E, Chinesta F and Doblaré M (2007). A natural element updated Lagrangian strategy for free-surface fluid dynamics. J Comput Phys 223(1): 127–150

    Article  MathSciNet  MATH  Google Scholar 

  18. Idelsohn SR and Oñate E (2006). To mesh or not to mesh: that is the question. Comput Methods Appl Mech Eng 195(37–40): 4681–4696

    Article  MATH  Google Scholar 

  19. Idelsohn SR, Oñate E, Calvo N and del Pin F (2003). The meshless finite element method. Int J Numer Methods Eng 58: 893–912

    Article  MATH  Google Scholar 

  20. Idelsohn SR, Oñate E and del Pin F (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7): 964–989

    Article  MATH  Google Scholar 

  21. Lewis RW, Navti SE and Taylor C (1997). A mixed lagrangian-eulerian approach to modelling fluid flow during mould filling. Int J Numer Methods Fluids 25: 931–952

    Article  MATH  Google Scholar 

  22. Liu WK, Jun S, Li S, Adee J and Belytschko T (1995). Reproducing kernel particle methods. Int J Numer Methods Eng 38: 1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  23. Mandal DP and Murthy CA (1997). Selection of alpha for alpha-hull in \({\mathbb{R}^2}\) Pattern Recognit 10: 1759–1767

    Article  Google Scholar 

  24. Martinez MA, Cueto E, Alfaro I, Doblaré M and Chinesta F (2004). Updated Lagrangian free surface flow simulations with Natural Neighbour Galerkin methods. Int J Numer Methods Eng 60(13): 2105–2129

    Article  MATH  Google Scholar 

  25. Nayroles B, Touzot G and Villon P (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318

    Article  MATH  Google Scholar 

  26. Sukumar N, Moran B and Belytschko T (1998). The natural element method in solid mechanics. Int J Numer Methods Eng 43(5): 839–887

    Article  MathSciNet  MATH  Google Scholar 

  27. Sukumar N, Moran B, Semenov AY and Belikov VV (2001). Natural neighbor Galerkin methods. Int J Numer Methods Eng 50(1): 1–27

    Article  MathSciNet  MATH  Google Scholar 

  28. Teichmann M, Capps M (1998) Surface reconstruction with anisotropic density-scaled alpha shapes. In: Proceedings of the 1998 IEEE Visualization Conference

  29. Zienkiewicz OC and Godbolet PN (1974). Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8: 3–16

    MATH  Google Scholar 

  30. Zienkiewicz OC, Pain PC and Oñate E (1978). Flow of solids during forming and extrusion: some aspects of numerical solutions. Int J Solids Struct 14: 15–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cueto.

Additional information

Work supported by the Spanish Ministry of Education and Science through grant number CICYT-DPI2005-08727-C02-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galavís, A., González, D., Alfaro, I. et al. Improved boundary tracking in meshless simulations of free-surface flows. Comput Mech 42, 467–479 (2008). https://doi.org/10.1007/s00466-008-0263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0263-5

Keywords

Navigation