Skip to main content
Log in

Error-controlled adaptive mixed finite element methods for second-order elliptic equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, we deal with a posteriori error estimates and adaptivity for mixed finite element discretizations of second-order elliptic equations, which are applied to the Poisson equation. The method proposed is an extension to the one recently introduced in [10] to the case of inhomogeneous Dirichlet and Neumann boundary conditions. The residual-type a posteriori error estimator presented in this paper relies on a postprocessed and therefore improved solution for the displacement field which can be computed locally, i.e. on the element level. Furthermore, it is shown that this discontinuous postprocessed solution can be further improved by an averaging technique. With these improved solutions at hand, both upper and lower bounds on the finite element discretization error can be obtained. Emphasis is placed in this paper on the numerical examples that illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso A (2006) Error estimators for a mixed method. Numer Math 74: 385–395

    Article  MathSciNet  Google Scholar 

  2. Arnold D, Brezzi F (1985) Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél Math Anal Numér 19: 7–32

    MathSciNet  MATH  Google Scholar 

  3. Babuška I, Osborn J, Pitkäranta J (1980) Analysis of mixed methods using mesh dependent norms. Math Comp 35: 1039–1062

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahriawati C, Carstensen C (2005) Three MATLAB implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput Methods Appl Math 5: 333–361

    MathSciNet  MATH  Google Scholar 

  5. Braess D, Verfürth R (1996) A posteriori error estimators for the Raviart-Thomas element. SIAM J Numer Anal 33: 2431–2444

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble J, Xu J (1989) A local post-processing technique for improving the accuracy in mixed finite-element approximations. SIAM J Numer Anal 26: 1267–1275

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi F, Douglas J, Marini L (1985) Two families of mixed finite elements for second order elliptic problems. Numer Math 47: 217–235

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi F, Douglas J, Durán R, Fortin M (1987) Mixed finite elements for second order elliptic problems in three variables. Numer Math 51: 237–250

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen C (1997) A posteriori error estimate for the mixed finite element method. Math Comp 66: 465–476

    Article  MathSciNet  MATH  Google Scholar 

  10. Lovadina C, Stenberg R (2006) Energy norm a posteriori error estimates for mixed finite element methods. Math Comp 75: 1659–1674

    Article  MathSciNet  MATH  Google Scholar 

  11. Nédélec JC (1986) A new family of mixed finite elements in R 3. Numer Math 50: 57–81

    Article  MathSciNet  MATH  Google Scholar 

  12. Raviart PA, Thomas J (1977) A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., vol 606. Springer, Berlin, pp 292–315

  13. Stenberg R (1990) Some new families of finite elements for the Stokes equations. Numer Math 56: 827–838

    Article  MathSciNet  MATH  Google Scholar 

  14. Stenberg R (1991) Postprocessing schemes for some mixed finite elements. RAIRO Modél Math Anal Numér 25: 151–167

    MathSciNet  MATH  Google Scholar 

  15. Wohlmuth B, Hoppe R (1999) A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements. Math Comp 68: 1347–1378

    Article  MathSciNet  MATH  Google Scholar 

  16. Zienkiewicz O, Zhu J (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24: 337–357

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Rüter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüter, M., Stenberg, R. Error-controlled adaptive mixed finite element methods for second-order elliptic equations. Comput Mech 42, 447–456 (2008). https://doi.org/10.1007/s00466-008-0259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0259-1

Keywords

Navigation