Skip to main content
Log in

Fast Galerkin BEM for 3D-potential theory

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the development of a fast spectral method for solving direct and indirect boundary integral equations in 3D-potential theory. Based on a Galerkin approximation and the Fast Fourier Transform, the proposed method is a generalization of the precorrected-FFT technique to handle not only single-layer potentials but also double-layer potentials and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are presented to illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee PK (1994). The boundary element methods in engineering. McGraw-Hill, London

    Google Scholar 

  2. Bespalov AN (2000). On the use of a regular grid for implementation of boundary integral methods for wave problems. Russ J Numer Anal Math Model 15(6): 469–488

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnet M (1995). Boundary integral equation methods for solids and fluids. Wiley, New York

    Google Scholar 

  4. Brandt A (1991). Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput Phys Commun 65: 24–38

    Article  MathSciNet  MATH  Google Scholar 

  5. Dunavant DA (1985). High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21: 129–1148

    Article  MathSciNet  MATH  Google Scholar 

  6. Gray LJ, Glaeser JM and Kaplan T (2004). Direct evaluation of hypersingular Galerkin surface integrals. SIAM J Sci Comput 25(5): 1534–1556

    Article  MathSciNet  MATH  Google Scholar 

  7. Greengard L and Rokhlin V (1987). A fast algorithm for particle simulations. J Comput Phys 73: 325–348

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu H, Blaauw DT, Zolotov V, Gala K, Zhao M, Panda R and Sapatnekar S (2003). Fast on-chip inductance simulation using a precorrected-FFT method. IEEE Trans Comput Aided Des Integr Circuits Syst 22(1): 49–66

    Article  Google Scholar 

  9. Lage C and Schwab C (1998). Wavelet Galerkin algorithms for boundary integral equations. SIAM J Sci Stat Comput 20: 2195– 2222

    Article  MathSciNet  Google Scholar 

  10. Lutz AD and Gray LJ (1993). Exact evaluation of singular boundary integrals without CPV. Comm Num Meth Eng 9: 909–915

    Article  MATH  Google Scholar 

  11. Masters N and Ye W (2004). Fast BEM solution for coupled 3D electrostatic and linear elastic problems. Eng Anal Bound Elem 28: 1175–1186

    Article  MATH  Google Scholar 

  12. Nie X-C, Li L-W and Yuan N (2002). Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering. J Electromagn Waves Appl 16(8): 1171–1187

    Article  Google Scholar 

  13. Nishimura N (2002). Fast multipole accelerate boundary integral equation methods. ASME Appl Mech Rev 55(4): 299–324

    Article  Google Scholar 

  14. París F and Canãs J (1997). Boundary element method: fundamentals and applications. Oxford University Press, New York

    MATH  Google Scholar 

  15. Phillips JR and White JK (1997). A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans Comput Aided Des Integr Circuits Syst 16(10): 1059–1072

    Article  Google Scholar 

  16. Pierce AP and Napier JAL (1995). A spectral multipole method for efficient solution of large-scale boundary element models in elastostatics. Int J Numer Meth eng 38(23): 4009–4034

    Article  Google Scholar 

  17. Press WH, Teukolsky SA, Vertterling WT and Flannery BP (1986). Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  18. Richardson JD, Gray LJ, Kaplan T and Napier JAL (2001). Regularized spectral multipole BEM for plane elasticity. Eng Anal Bound Elem 25: 297–311

    Article  MATH  Google Scholar 

  19. Saad Y (1993). A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14(2): 461–469

    Article  MathSciNet  MATH  Google Scholar 

  20. Saad Y (2003). Iterative methods for sparse linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  21. Sleijpen GLG and Fokkema DR (1993). BiCGSTAB(l) for linear equations involving unsymmetric matrices with complex spectrum. ETNA 1: 11–32

    MathSciNet  MATH  Google Scholar 

  22. Tausch J (2003). Sparse BEM for potential theory and Stokes flow using variable order wavelets. Comput Mech 32(4–6): 312–318

    Article  MathSciNet  MATH  Google Scholar 

  23. Tissari S and Rahola J (2003). A precorrected-FFT method to accelerate the solution of the forward problem in magnetoencephalography. Phys Med Biol 48: 523–541

    Article  Google Scholar 

  24. Van der Vorst HA and Vuik C (1994). GMRESR: a family of nested GMRES methods. Num Lin Alg Appl 14: 369–386

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Nintcheu Fata.

Additional information

The US Government retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fata, S.N. Fast Galerkin BEM for 3D-potential theory. Comput Mech 42, 417–429 (2008). https://doi.org/10.1007/s00466-008-0251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0251-9

Keywords

Navigation