Skip to main content
Log in

Imposing rigidity constraints on immersed objects in unsteady fluid flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Imposing rigidity constraints of an immersed elastic body in a transient flow field is not trivial. It requires solution stability and accuracy. In this paper, we present an efficient and accurate algorithm implemented to enforce fluid–structure interface constraints used in the immersed finite element method (IFEM). This interface treatment is a constraint applied onto the rigid bodies based on the fluid structure interaction force evaluated from the immersed solid object. It requires no ad hoc constants or adjustments, thus providing numerical stability and avoiding unnecessary trial-and-error procedures in defining the stiffness of the elastic body. This force term can be evaluated for both uniform and nonuniform fluid grids based on the higher order interpolation function adopted in the IFEM. The ability in handling nonuniform interpolations offers the convenience in modeling arbitrary geometrical shapes and provides solution refinements around interfaces. The results we obtained from flow past a rigid cylinder demonstrate that this convenient way of constraining the interface is a reliable and robust numerical approach to solve unsteady fluid flow interacting with immersed rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peskin CS (2002). The immersed boundary method. Acta Numer 11: 479–517

    Article  MATH  MathSciNet  Google Scholar 

  2. Li Z and Lai M (2001). The immersed interface method for the Navier–Stokes equations with singular forces. J Comput Phys 171: 822–842

    Article  MATH  MathSciNet  Google Scholar 

  3. LeVeque RJ and Li ZL (1997). Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J Sci Comput 18(3): 709–735

    Article  MATH  MathSciNet  Google Scholar 

  4. Li ZL and LeVeque R (1994). The immersed interface methods for elliptic equations with discontinuous coefficients and singular sources. SIAM J Sci Comput 31: 1019–1994

    MATH  MathSciNet  Google Scholar 

  5. Li Z (1997). Immersed interface method for moving interface problems. na 14(4): 269–293

    MATH  Google Scholar 

  6. Zhang LT and Gay M (2007). Immersed finite element method for fluid–structure interactions. J Fluids Struct 23(6): 839–857

    Article  Google Scholar 

  7. Zhang LT, Gerstenberger A, Wang X and Liu WK (2004). Immersed finite element method. Comput Methods Appl Mech Eng 193: 2051–2067

    Article  MATH  MathSciNet  Google Scholar 

  8. Mittal R and Iaccarino G (2005). Immersed boundary methods. Ann Rev Fluid Mech 37: 239–61

    Article  MathSciNet  Google Scholar 

  9. Fogelson AL and Peskin CS (1988). A fast numerical method for solving three-dimensional stokes equation in the presence of suspended particles. J Comput Phys 79: 50–69

    Article  MATH  MathSciNet  Google Scholar 

  10. Hofler K and Schwarzer S (2000). Navier–Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys Rev E 61: 7146–7160

    Article  Google Scholar 

  11. Lai M and Peskin C (2001). An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2): 705–719

    Article  MathSciNet  Google Scholar 

  12. Goldstein D, Hadler R and Sirovich L (1993). Modeling a no-slip flow boundary with an external force field. J Comput Phys 105: 354–366

    Article  MATH  Google Scholar 

  13. Saiki EM and Biringen S (1996). Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J Comput Phys 123: 450–465

    Article  MATH  Google Scholar 

  14. Mohd-Yusof J (1997) Combined immersed boundary/B-splines method for simulations of flows in complex geometries, Center for Turbulence Research Annual Research Briefs, NASA Ames/Stanford University, pp 317–327

  15. Fadlun EA, Verzicco R, Orlandi P and Mohd-Yusof J (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161: 35–60

    Article  MATH  MathSciNet  Google Scholar 

  16. Glowinski R, Pan T, Hesla T, Joseph D and Périaux J (2001). A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169: 363–426

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim J, Kim D and Choi H (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. J Comput Phys 171: 132–150

    Article  MATH  MathSciNet  Google Scholar 

  18. Silva ALE, Silveiro-Neto A and Damasceno J (2003). Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J Comput Phys 189: 351–370

    Article  MATH  Google Scholar 

  19. Liu Y, Zhang LT, Wang X and Liu WK (2004). Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics. Int J Numer Methods Fluids 46(12): 1237–1252

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang LT, Wagner G and Liu WK (2003). Modeling and simulation of fluid structure interaction by meshfree and fem. Commun Numer Methods Eng 19: 615–621

    Article  MATH  Google Scholar 

  21. Liu WK, Liu Y, Farrell D, Zhang LT, Wang S, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X and Hsu H (2006). Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195: 1722–1749

    Article  MATH  MathSciNet  Google Scholar 

  22. Gay M, Zhang LT and Liu WK (2006). Stent modeling using immersed finite element method. Comput Methods Appl Mech Eng 195: 4358–4370

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu Y, Zhang LT, Wang X and Liu WK (2004). Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics. Int J Numer Methods Fluids 46(12): 1237–1252

    Article  MATH  MathSciNet  Google Scholar 

  24. Kim NH, Choi KK and Botkin ME (2003). Numerical method for shape optimization using meshfree method. Struct Multidiscip Optim 24: 418–429

    Article  Google Scholar 

  25. Li S and Liu WK (2002). Meshfree and particle methods and their applications. Appl Mech Rev 55: 1–34

    Article  Google Scholar 

  26. Liu WK, Jun S and Zhang YF (1995). Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang X and Liu WK (2004). Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193: 1305–1321

    Article  MATH  Google Scholar 

  28. Zhang LT, Wagner GJ and Liu WK (2002). A parallized meshfree method with boundary enrichment for large-scale cfd. J Comput Phys 176: 483–506

    Article  MATH  Google Scholar 

  29. Dennis SCR and Chang G (1970). Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100. J Fluid Mech 42: 471–489

    Article  MATH  Google Scholar 

  30. Khadra K, Angot P, Parneix S and Caltagirone J (2000). Fictitious domain approach for numerical modelling of Navier–Stokes equations. Int J Numer Methods Fluids 34: 651–684

    Article  MATH  Google Scholar 

  31. Park J, Kwon K and Choi H (1998). Numerical solutions of flow past a circular cylinder at reynolds number up to 160. KSME Int J 12: 1200–1205

    Google Scholar 

  32. Tuann SY and Olson MD (1978). Numerical studies of the flow around a circular cylinder by a finite element method. Comput Fluids 6: 219–240

    Article  MATH  Google Scholar 

  33. Coutanceau M and Defaye J (1991). Circular cylinder wake configurations: a flow visualization survey. Appl Mech Rev 44: 255–306

    Article  Google Scholar 

  34. Grove A, Shair F, Petersen E and Acrivos A (1964). An experimental investigation of the steady separated flow past a circular cylinder. J Fluid Mech 19: 60–80

    Article  MATH  Google Scholar 

  35. Tritton DJ (1971). A note on vortex streets behind circular cylinders at low reynolds numbers. J Fluid Mech 45(1): 203–208

    Article  Google Scholar 

  36. Tezduyar TE and Liou J (1991). On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows. Comput Methods Appl Mech Eng 85: 207–217

    Article  MATH  Google Scholar 

  37. Tezduyar TE and Shih R (1991). Numerical experiments on downstream boundary of flow past cylinder. J Eng Mech 117: 854–871

    Article  Google Scholar 

  38. Behr M, Hastreiter D, Mittal S and Tezduyar TE (1995). Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput Methods Appl Mech Eng 123: 309–316

    Article  Google Scholar 

  39. Clift R, Grace J and Weber M (1978). Bubbles, drops, and particles. Academic Press, London

    Google Scholar 

  40. Gresho P (1991). Incompressible fluid dynamics: some fundamental formulation issues. Ann Rev Fluid Mech 23: 413–453

    Article  MathSciNet  Google Scholar 

  41. Sucker D and Brauer H (1975). Fluiddynamik bei der angestromten zilindern. Warme Stoffubertragung 8: 149

    Article  Google Scholar 

  42. White F (1991). Viscous fluid flow. MacGraw-Hill, New York

    Google Scholar 

  43. Fornberg B (1980). A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98: 819–855

    Article  MATH  Google Scholar 

  44. Ye T, Mittal R, Udaykumar HS and Shyy W (1999). An accurate cartesian grid method for viscous incompressible flows with complex boundaries. J Comput Phys 156: 209–240

    Article  MATH  Google Scholar 

  45. Roshko A (1955). On the wake and drag of bluff bodies. J Aeronaut Sci 25: 124–135

    Google Scholar 

  46. Williamson CH (1996). Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28: 477–539

    Article  MathSciNet  Google Scholar 

  47. Ladenburg R (1907). Über den Einfluß von Wänden auf die Bewegung einer kugel in einer reibenden flüssigkeit. Ann Phys 23: 447–458

    Article  Google Scholar 

  48. Fayon A and Happel J (1960). Effect of a cylindrical boundary on a fixed rigid sphere in a moving viscous fluid. AIChE J 6: 55–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.T., Gay, M. Imposing rigidity constraints on immersed objects in unsteady fluid flows. Comput Mech 42, 357–370 (2008). https://doi.org/10.1007/s00466-008-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0244-8

Keywords

Navigation