Skip to main content
Log in

Arbitrary Lagrangian–Eulerian method in plasticity of pressure-sensitive material: application to powder forming processes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an application of Arbitrary Lagrangian–Eulerian (ALE) method is presented in plasticity behavior of pressure-sensitive material, with special reference to large deformation analysis of powder compaction process. In ALE technique, the reference configuration is used for describing the motion, instead of material configuration in Lagrangian, and spatial configuration in Eulerian formulation. The convective term is used to reflect the relative motion between the mesh and the material. Each time-step is divided into the Lagrangian phase and Eulerian phase. The convection term is neglected in the material phase, which is identical to a time-step in a standard Lagrangian analysis. The stresses and plastic internal variables are converted to account the relative mesh-material motion in the convection phase. The ALE formulation is then performed within the framework of a three-invariant cap plasticity model in order to predict the non-uniform density distribution during the large deformation of powder die pressing. The plasticity model is based on a hardening rule with the isotropic and kinematic material functions. The constitutive elasto-plastic matrix and its components are derived by using the definition of yield surface, material functions and non-linear elastic behavior, as function of hardening parameters. Finally, the numerical examples are performed to illustrate the applicability of the computational algorithm in modeling of powder forming process and the results are compared with those obtained from Lagrangian simulation in order to demonstrate the accuracy of proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis RW, Khoei AR (1998) Numerical modeling of large deformation in metal powder forming. Comput Meth Appl Mech Eng 159: 291–328

    Article  MATH  Google Scholar 

  2. Khoei AR, Lewis RW (1999) Adaptive finite element remeshing in a large deformation analysis of metal powder forming. Int J Numer Meth Engng 45: 801–820

    Article  MATH  Google Scholar 

  3. Khoei AR, Azami AR, Anahid M, Lewis RW (2006) A three-invariant hardening plasticity for numerical simulation of powder forming processes via the Arbitrary Lagrangian–Eulerian FE model. Int J Numer Meth Engng 66: 843–877

    Article  MATH  Google Scholar 

  4. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian– Eulerian finite element formulation for incompressible viscous flows. Comput Meth Appl Mech Eng 29: 329–349

    Article  MATH  MathSciNet  Google Scholar 

  5. Kennedy JM, Belytschko T (1981) Theory and application of a finite element method for Arbitrary Lagrangian–Eulerian fluids and structures. Nuclear Eng Design 68: 119–146

    Google Scholar 

  6. Haber RB (1984) A mixed Eulerian–Lagrangian displacement model for large-deformation analysis in solid mechanics. Comput Meth Appl Mech Eng 43: 277–292

    Article  MATH  Google Scholar 

  7. Liu WK, Belytschko T, Chang H (1986) An Arbitrary Lagrangian– Eulerian finite element method for path-dependent materials. Comput Meth Appl Mech Eng 58: 227–245

    Article  MATH  Google Scholar 

  8. Liu WK, Chang H, Chen JS, Belytschko T, Zhang YF (1988) Arbitrary Lagrangian–Eulerian Petrov–Galerkin finite elements for nonlinear continua. Comput Meth Appl Mech Eng 68: 259–310

    Article  MATH  Google Scholar 

  9. Benson DJ (1989) An efficient, accurate, simple ALE method for nonlinear FE programs. Comput Meth Appl Mech Eng 72: 305–350

    Article  MATH  Google Scholar 

  10. Schreurs PJG, Veldpaus FE, Brekelmans WAM (1986) Simulation of forming processes, using the arbitrary Eulerian–Lagrangian formulation. Comput Meth Appl Mech Eng 58: 19–36

    Article  MATH  Google Scholar 

  11. Huetink J, Vreede PT, Lugt JVD (1990) Progress in mixed Eulerian–Lagrangian finite element simulation of forming processes. Int J Numer Meth Engng 30: 1441–1457

    Article  MATH  Google Scholar 

  12. Ghosh S, Kikuchi N (1991) An Arbitrary Lagrangian–Eulerian finite element method for large deformation analysis of elastic- viscoplastic solids. Comput Meth Appl Mech Eng 86: 127– 188

    Article  MATH  Google Scholar 

  13. Yamada T, Kikuchi F (1993) An arbitrary Lagrangian–Eulerian finite element method for incompressible hyperelasticity. Comput Meth Appl Mech Eng 102: 149–177

    Article  MATH  MathSciNet  Google Scholar 

  14. Huerta A, Casadei F (1994) New ALE applications in non-linear fast-transient solid dynamics. Eng Comput 11: 317–345

    MATH  MathSciNet  Google Scholar 

  15. Pijaudier-Cabot G, Bodé L (1995) Arbitrary Lagrangian–Eulerian finite element analysis of strain localization in transient problems. Int J Numer Meth Engng 38: 4171–4191

    Article  MATH  Google Scholar 

  16. Ghosh S, Raju S (1996) R-S adapted arbitrary Lagrangian– Eulerian finite element method of metal-forming with strain localization. Int J Numer Meth Engng 39: 3247–3272

    Article  MATH  Google Scholar 

  17. Wang J, Gadala MS (1997) Formulation and survey of ALE method in nonlinear solid mechanics. Finite Elem Anal Design 24: 253–269

    Article  MATH  Google Scholar 

  18. Gadala MS, Wang J (1998) ALE formulation and its application in solid mechanics. Comput Meth Appl Mech Eng 167: 33–55

    Article  MATH  MathSciNet  Google Scholar 

  19. Gadala MS, Wang J (1999) Simulation of metal forming processes with finite element method. Int J Numer Meth Engng 44: 1397–1428

    Article  MATH  Google Scholar 

  20. Peery JS, Carroll DE (2000) Multi-material ALE methods in unstructured grids. Comput Meth Appl Mech Eng 187: 591–619

    Article  MATH  MathSciNet  Google Scholar 

  21. Davey K, Ward MJ (2002) A practical method for finite element ring rolling simulation using the ALE flow formulation. Int J Mech Sciences 44: 165–195

    Article  MATH  Google Scholar 

  22. Rodriguez-Ferran A, Casadei F, Huerta A (1998) ALE stress update for transient and quasistatic processes. Int J Numer Meth Engng 43: 241–262

    Article  MATH  Google Scholar 

  23. Rodriguez-Ferran A, Perez-Foguet A, Huerta A (2002) Arbitrary Lagrangian–Eulerian (ALE) formulation for hyperelastoplasticity. Int J Numer Meth Engng 53: 1831–1851

    Article  MATH  Google Scholar 

  24. Armero F, Love E (2003) An arbitrary Lagrangian–Eulerian finite element method for finite strain plasticity. Int J Numer Meth Engng 57: 471–508

    Article  MATH  MathSciNet  Google Scholar 

  25. Bayoumi HN, Gadala MS (2004) A complete finite element treatment for the fully coupled implicit ALE formulation. Comput Mech 33: 435–452

    Article  MATH  Google Scholar 

  26. Askes H, Rodrígues-Ferran A, Huerta A (1999) Adaptive analysis of yield line patterns in plates with the Arbitrary Lagrangian–Eulerian method. Comput Struct 70: 257–271

    Article  MATH  Google Scholar 

  27. Gadala MS, Movahhedy MR, Wang J (2002) On the mesh motion for ALE modeling of metal forming processes. Finite Elem Anal Design 38: 435–459

    Article  MATH  Google Scholar 

  28. Aymone JLF (2004) Mesh motion techniques for the ALE formulation in 3D large deformation problems. Int J Numer Meth Engng 59: 1879–1908

    Article  MATH  Google Scholar 

  29. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  30. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Engng Mech Div 102: 749–756

    Google Scholar 

  31. Fleck NA (1995) On the cold compaction of powders. J Mech Phys Solids 43: 1409–1431

    Article  MATH  MathSciNet  Google Scholar 

  32. Ransing RS, Gethin DT, Khoei AR, Mosbah P, Lewis RW (2000) Powder compaction modelling via the discrete and finite element method. J Mat Des 21: 263–269

    Google Scholar 

  33. McMeeking RM, Jefferson G, Haritos GK (2001) Elastic and viscoelastic response of finite particle junctions in granular materials. In: Zavaliangos A, Laptev A (eds) Recent development in computer modeling of powder metallurgy process. IOS Press, Amterdam

    Google Scholar 

  34. Lewis RW, Jinka AGK, Gethin DT (1993) Computer aided simulation of metal powder die compaction process. Powder Metallurgy Int 25: 287–293

    Google Scholar 

  35. Brown SB, Weber GGA (1988) A constitutive model for the compaction of metal powders. Modern Dev Powder Metall 18: 465– 476

    Google Scholar 

  36. Chenot JL, Bay F, Fourment L (1990) Finite element simulation of metal powder forming. Int J Numer Meth Engng 30: 1649– 1674

    Article  Google Scholar 

  37. Brekelmans WAM, Janssen JD, Van de Ven AAF, de With G (1991) An Eulerian approach for die compaction processes. Int J Num Meth Eng 31: 509–524

    Article  MATH  Google Scholar 

  38. Haggblad HA, Oldenburg M (1994) Modeling and simulation of metal powder die pressing with use of explicit time integration. Model Simul Mater Sci Eng 2: 893–911

    Article  Google Scholar 

  39. Watson TJ, Wert JA (1993) On the development of constitutive relations for metallic powders. Metallurgical Trans 24: 1993– 2071

    Article  Google Scholar 

  40. Brown S, Abou-Chedid G (1994) Yield behavior of metal powder assemblages. J Mech Phys Solids 42: 383–398

    Article  Google Scholar 

  41. Aydin I, Briscoe BJ, Sanliturk KY (1996) The internal form of compacted ceramic components. A comparison of a finite element modeling with experiment. Powder Tech 89: 239–254

    Article  Google Scholar 

  42. Khoei AR, Lewis RW (1998) Finite element simulation for dynamic large elasto-plastic deformation in metal powder forming. Finite Elem Anal Des 30: 335–352

    Article  MATH  Google Scholar 

  43. Brandt J, Nilsson L (1999) A constitutive model for compaction of granular media, with account for deformation induced anisotropy. Mech Cohes Frict Mater 4: 391–418

    Article  Google Scholar 

  44. Gu C, Kim M, Anand L (2001) Constitutive equations for metal powders:application to powder forming processes. Int J Plast 17: 147–209

    Article  MATH  Google Scholar 

  45. Lewis RW, Khoei AR (2001) A plasticity model for metal powder forming processes. Int J Plast 17: 1659–1692

    Article  MATH  Google Scholar 

  46. Khoei AR, Bakhshiani A, Mofid M (2003) An endochronic plasticity model for finite strain deformation of powder forming processes. Finite Elem Analy Des 40: 187–211

    Article  Google Scholar 

  47. Khoei AR, Bakhshiani A (2004) A hypoelasto-plastic finite strain simulation of powder compaction processes with density dependent endochronic model. Int J Solids Struct 41: 6081–6110

    Article  MATH  Google Scholar 

  48. Khoei AR, Azami AR (2005) A single cone-cap plasticity with an isotropic hardening rule for powder materials. Int J Mech Sci 47: 94–109

    Article  Google Scholar 

  49. Khoei AR, DorMohammadi H (2007) A three-invariant cap plasticity with isotropic–kinematic hardening rule for powder materials. Comput Mat Sci

  50. Khoei AR (2005) Computational plasticity in powder forming processes. Elsevier, UK

    Google Scholar 

  51. Doremus P, Geindreau C, Marttin A, Debove L, Lecot R, Dao M (1995) High pressure triaxial cell for metal powder. Powder Metall 38: 284–287

    Google Scholar 

  52. Azami AR, Khoei AR (2006) 3D computational modeling of powder compaction processes using a three-invariant hardening cap plasticity model. Finite Elem Anal Des 42: 792–807

    Article  Google Scholar 

  53. Khoei AR, Bakhshiani A, Mofid M (2003) An implicit algorithm for hypoelasto-plastic and hypoelasto-viscoplastic endochronic in finite strain isotropic–kinematic hardening model. Int J Solids Struct 40: 3393–3423

    Article  MATH  Google Scholar 

  54. Shen WM, Kimura T, Takita K, Hosono K (2001) Numerical simulation of powder transfer and compaction based on continuum model. In: Mori K (ed) Simulation of materials processing: theory, methods and applications, pp 1027–1032

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khoei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoei, A.R., Anahid, M., Shahim, K. et al. Arbitrary Lagrangian–Eulerian method in plasticity of pressure-sensitive material: application to powder forming processes. Comput Mech 42, 13–38 (2008). https://doi.org/10.1007/s00466-007-0232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0232-4

Keywords

Navigation