Skip to main content
Log in

Computing singular perturbations for linear elliptic shells

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is devoted to the theoretical and numerical study of singular perturbation problems for elliptic inhibited shells. We present a reduction of the classical membrane equations to a partial differential equation with respect to the bending displacement, which is well adapted to the study of singularities of the limit problem. For a discontinuous loading or when the boundary of the loading domain presents corners, we put in a prominent position the existence of two kinds of singularities. One of them is not classical; it reduces to a logarithmic point singularity at the corner of the loading domain. To finish numerical simulations are performed with a finite element software coupled with an anisotropic adaptive mesh generator. They enable to visualize precisely the singularities predicted by the theory with only a very small number of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar Y and Weichert D (1991). A finite-rotation theory for elastic–plastic shells under consideration of shear deformations. ZAMM 71(10): 379–389

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernadou M (1994) Méthodes d’Éléments Finis por les Problémes de Coques Minces, Masson

  3. Borouchaki H, Hecht F and Frey PJ (1998). Mesh gradation control. Int J Numer Methods Eng 43: 1143–1165

    Article  MathSciNet  MATH  Google Scholar 

  4. Borouchaki H, George PL, Hecht F, Laug P and Saltel E (1997). Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem Anal Des 25: 61–83

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuneval J (1971). Schéma d’une théorie générale des coques minces élastiques. J Mech 10(2): 291–313

    MathSciNet  MATH  Google Scholar 

  6. Chien WZ (1944) The intrinsic theory of thin shells and plates. Part I: general theory and part III: application to thin shells. Quart Applied Math 1:297–327 and 2:120–135

    Google Scholar 

  7. Ciarlet PG, Sanchez-Palencia E (1993) Un théorème d’existence et d’unicité pour les Équations des coques membranaires. C R Acad Sci Paris 317, série I:801–805

    Google Scholar 

  8. De Souza CA (2003) Techniques de maillage adaptatif pour le calcul des solutions de coques minces. PhD Thesis, University de Paris VI

  9. De Souza CA, Leguillon D and Sanchez-Palencia É (2003). Adaptive mesh computation for a shell-like problem with singular layers. Int J Multiscale Computat Eng 1(4): 401–417

    Article  Google Scholar 

  10. De Souza CA and Sanchez-Palencia É (2004). Complexification phenomenon in an example of sensitive singular perturbation. Comptes Rendus Mecanique 332(8): 605–612

    Article  Google Scholar 

  11. Destuynder P (1985). A classification of thin shell theory. Acta Appl Math 4: 15–63

    Article  MathSciNet  MATH  Google Scholar 

  12. Egorov VE, Schultze BW (1997) Pseudo-differential operators, singularities, applications. Birkhäuser

  13. George PL (2001) Maillage et adaptation. Hermes

  14. Goldenveizer AL (1962). Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. Prikl Math Mech 26(4): 668–686

    MathSciNet  Google Scholar 

  15. Hamdouni A and Millet O (2003). Classification of thin shell models deduced from the nonlinear three-dimensional elasticity. Part I: the shallow shells. Arch Mech 55(2): 135–175

    MathSciNet  MATH  Google Scholar 

  16. Hamdouni A and Millet O (2003). Classification of thin shell models deduced from the nonlinear three-dimensional elasticity. Part II: the strongly bent shells. Arch Mech 55(2): 177–219

    MathSciNet  MATH  Google Scholar 

  17. John F (1965). Estimates for the derivatives of the stresses in a thin shell and and interior shell equations. Comm Pure Appl Math 18: 235–267

    Article  MathSciNet  Google Scholar 

  18. Koiter WT (1960) A consistent first approximation in the general theory of thin elastic shells. In: Proceedings of the symposium on the theory of thin elastic shells, North-Holland Publishing Co. Amsterdam, pp 12–33

  19. Koiter WT (1959). The theory of thin elastic shells. North-Holland, Amsterdam

    Google Scholar 

  20. Kondratiev VA (1967). Boundary problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16: 227–313

    Google Scholar 

  21. Leguillon D and Sanchez-Palencia É (1987). Computation of singular solutions in elliptic problems and elasticity. Wiley, New York

    MATH  Google Scholar 

  22. Lions JL (1973). Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lectures Notes in Math, vol 323. Springer, Berlin

    Google Scholar 

  23. Lods et V and Miara B (1998). Nonlinearly elastic shell models: a formal asymptotic approach. II. The flexural model. Arch Ration Mech Anal 142(4): 355–374

    Article  Google Scholar 

  24. Miara B (1994) Analyse asymptotique des coques membranaires non linéairement élastiques. C R Acad Sci Paris t 318, série I:689–694

  25. Miara B, Sanchez-Palencia E (1996) Asymptotic analysis of linearly elastic shells. Asymptot Anal 41–54

  26. Novozhilov VV (1959). The theory of thin shells. Walters Noordhoff Publ., Groningen

    MATH  Google Scholar 

  27. Sanchez-Palencia E (1989) Statique et dynamique des coques minces, I —Cas de flexion pure non inhibée. C R Acad Sci Paris t 309, série I:411–417

  28. Sanchez-Palencia E (1989) Statique et dynamique des coques minces, I —Cas de flexion pure inhibée—Approximation membranaire. C R Acad Sci Paris t 309, série I:531–537

  29. Sanchez-Palencia E (1990) Passage à la limite de l’Élasticité tridimensionnelle à la théorie asymptotique des coques minces. C R Acad Sci Paris 311, série II:909–916

    Google Scholar 

  30. Sanchez-Palencia É (2003). On internal and boundary layers with unbounded energy in thin shell theory. Asymptot Anal 36: 169–185

    MathSciNet  MATH  Google Scholar 

  31. Sanchez-Hubert J and Sanchez-Palencia É (1997). Coques Élastiques minces—Propriétéasymptotiques. Masson, Paris

    Google Scholar 

  32. Schmidt R. and Weichert D (1989). A refined theory for elastic–plastic shells at moderate rotations. ZAMM 69: 11–21

    Article  MathSciNet  MATH  Google Scholar 

  33. Stumpf H and Schieck B (1994). Theory and analysis of shells undergoing finite elastic–plastic strains and rotations. Acta Mech 106: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  34. Valid R (1995) The nonlinear theory of shells through variational principles. Wiley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béchet, F., Sanchez-Palencia, E. & Millet, O. Computing singular perturbations for linear elliptic shells. Comput Mech 42, 287–304 (2008). https://doi.org/10.1007/s00466-007-0204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0204-8

Keywords

Navigation