Skip to main content

Advertisement

Log in

On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a new strategy for calibration and validation of hierarchical multiscale models based on computational homogenization. The proposed strategy hinges on the concept of the experimental simulator repository (SIMEX) which provides the basis for a generic algorithmic framework in calibration and validation of multiscale models. Gradient-based and genetic algorithms are incorporated into SIMEX framework to investigate the validity of these algorithms in multiscale model calibration. The strategy is implemented using the eigendeformation-based reduced order homogenization (EHM) model and integrated into a commercial finite element package (Abaqus). Ceramic- and polymer- matrix composite problems are analyzed to study the capabilities of the proposed calibration and validation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oskay C and Fish J (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comp Meth Appl Mech Eng 196: 1216–1243

    Article  MathSciNet  Google Scholar 

  2. Fish J, Shek KL, Pandheeradi M and Shephard MS (1997). Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Meth Appl Mech Eng 148: 53–73

    Article  MATH  MathSciNet  Google Scholar 

  3. Fish J and Shek KL (1999). Finite deformation plasticity of composite structures: computational models and adaptive strategies. Comput Meth Appl Mech Eng 172: 145–174

    Article  MATH  Google Scholar 

  4. Fish J, Yu Q and Shek KL (1999). Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45: 1657–1679

    Article  MATH  Google Scholar 

  5. Dvorak GJ (1992). Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437: 311–327

    Article  MATH  MathSciNet  Google Scholar 

  6. Michel JC and Suquet P (2003). Nonuniform transformation field analysis. Int J Solids Struct 40: 6937–6955

    Article  MATH  MathSciNet  Google Scholar 

  7. Michel JC and Suquet P (2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Meth Appl Mech Eng 193: 5477–5502

    Article  MATH  MathSciNet  Google Scholar 

  8. Babuska I and Oden JT (2004). Verification and validation in computational engineering and science: basic concepts. Comp Meth Appl Mech Eng 193: 4057–4066

    Article  MATH  MathSciNet  Google Scholar 

  9. Lahellec N, Mazerolle F and Michel JC (2004). Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation. J Mech Phys Solids 52: 27–49

    Article  MATH  Google Scholar 

  10. Jeryan R, Warren CD, Carpenter J, Sklad PS (2004) Composite crash energy management. In: Automotive lightweighting materials, FY2004 progress report. Department of Energy, 2004

  11. Goldberg DE (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  12. Michalewicz Z (1992). Genetic algorithms + data structures = evolution programs. Springer, Berlin

    MATH  Google Scholar 

  13. Suquet PM (1987). Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E and Zaoui, A (eds) Homogenization techniques for composite media, pp. Springer, Heidelberg

    Google Scholar 

  14. Terada K, Kikuchi N (1995) Nonlinear homogenization method for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds) Computational methods in micromechanics, vol AMD-212/MD-62. pp 1–16. ASME

  15. Feyel F and Chaboche J-L (2000). Fe2 multiscale approach for modelling the elastoviscoplastic behavior of long fiber sic/ti composite materials. Comput Methods Appl Mech Eng 183: 309–330

    Article  MATH  Google Scholar 

  16. Simo JC and Ju JW (1987). Strain- and stress-based continuum damage models—i. formulation. Int J Solids Struct 23(7): 821–840

    Article  MATH  Google Scholar 

  17. Dube J-F, Pijaudier-Cabot G and La Borderie C (1996). Rate dependent damage model for concrete in dynamics. J Eng Mech 122(10): 939–947

    Article  Google Scholar 

  18. Lipetzky P, Dvorak GJ and Stoloff NS (1996). Tensile properties of a sic/sic composite. Mater Sci Eng A 216: 11–19

    Article  Google Scholar 

  19. Ianucci L (2006). Progressive failure modelling of woven carbon composite under impact. Int J Impact Eng 32: 1013–1043

    Article  Google Scholar 

  20. Kim K and Voyiadjis GZ (1999). Non-linear finite element analysis of composite panels. Composites: Part B, 30: 365–381

    Article  Google Scholar 

  21. Perzyna P (1966). Fundamental problems in viscoplasticity. Adv Appl Mech 9: 244–368

    Google Scholar 

  22. Griswold C, Cross WM, Kjerengtroen L and Kellar JJ (2005). Interphase variation in silane-treated glass-fiber-reinforced epoxy composites. J Adhesion Sci Technol 19(3–5): 279–290

    Google Scholar 

  23. Fish J (2006). Bridging the scales in nano engineering and science. J Nanoparticle Res 8: 577–594

    Article  Google Scholar 

  24. Dennis JE Jr and Schnabel RB (1996). Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics, vol 16. SIAM, Philadelphia

    Google Scholar 

  25. More JJ (1977) The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis, lecture notes in Mathamatics, vol 630. Springer, Heidelberg, pp 105–116

    Google Scholar 

  26. IMSL Math/Library Volumes 1 and 2 user’s manual. Visual numerics, 1997

  27. Gill PE, Murray W (1976) Minimization subject to bounds on the variables. Technical report NAC72, National Physical Laboratory, England

  28. Charbonneau P, Knapp B (1996) A user’s guide to PIKAIA 1.0. NCAR technical note, National Center for Atmospheric Research

  29. Ibrahimbegovic A., Knopf-Lenoir C, Kucerova A and Villon P (2004). Optimal design and optimal control of structures undergoing finite rotations and elastic deformations. Int J Numer Methods Eng 61: 2428–2460

    Article  MATH  MathSciNet  Google Scholar 

  30. Hrstka O and Kucerova A (2004). Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Adv Eng Softw 35: 237–246

    Article  Google Scholar 

  31. Brewer D (1999). HSR/EPM combustor materials development program. Mater Sci Eng A 261: 284–291

    Article  Google Scholar 

  32. Verilli M, Robinson RC, Calomino AM, Thomas DJ (2004) Ceramic matrix composite vane subelement testing in a gas turbine environment. In: Proceedings of ASME Turbo Expo 2004, number GT2004-53970, Vienna, Austria, June 14–17

  33. Morscher GN, Pujar VV (2004) Melt-infiltrated sic composites for gas turbine engine applications. In: Proceedings of 49th ASME IGTI Power for land, sea and air, number GT2004-53196, Vienna, Austria, June 14–17 2004

  34. Zinkle SJ, Snead LL (1998) Thermophysical and mechanical properties of sic/sic composites in fusion materials. Progress Report for Period Ending June 30 1998 DOE/ER-0313/24, Oak Ridge National Laboratory

  35. Thiruppukuzhi SV and Sun CT (2001). Models for the strain-rate-dependent behavior of polymer composites. Compos Sci Technol 61: 1–12

    Article  Google Scholar 

  36. Assessment of Research Needs for Wind Turbine Rotor Materials Technology. National Academies Press, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caglar Oskay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskay, C., Fish, J. On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42, 181–195 (2008). https://doi.org/10.1007/s00466-007-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0197-3

Keywords

Navigation