Computational Mechanics

, Volume 41, Issue 3, pp 371–378 | Cite as

The role of continuity in residual-based variational multiscale modeling of turbulence

  • I. Akkerman
  • Y. Bazilevs
  • V. M. Calo
  • T. J. R. Hughes
  • S. Hulshoff
Open Access
Original Paper

Abstract

This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135–4195, 2005). We make use of quadratic discretizations that are C0-continuous across element boundaries in standard finite elements, and C1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C1-continuous discretizations outperform their C0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

Keywords

Incompressible flows Finite elements NURBS Navier–Stokes equations Boundary layers Turbulent channel flows Residual-based turbulence modeling Isogeometric Analysis Continuity of discretization Variational multiscale formulation 

References

  1. 1.
    Akin JE and Tezduyar TE (2004). Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922 MATHCrossRefGoogle Scholar
  2. 2.
    Bazilevs Y (2006) Isogeometric analysis of turbulence and fluid-structure interaction. PhD thesis, ICES, UT AustinGoogle Scholar
  3. 3.
    Bazilevs Y and Hughes TJR (2007). Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR and Sangalli G (2006). Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16: 1031–1090 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bazilevs Y, Calo VM, Zhang Y and Hughes TJR (2006). Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng. Available as ICES Report 07-15, UT Austin (submitted)Google Scholar
  7. 7.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng (accepted for publication)Google Scholar
  8. 8.
    Bischoff M and Bletzinger K-U (2004). Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization. Comput Methods Appl Mech Eng 193: 1491–1516 CrossRefGoogle Scholar
  9. 9.
    Bochev PB, Gunzburger MD and Shadid JN (2004). On inf-sup stabilized finite element methods for transient problems. Comput Methods Appl Mech Eng 193: 1471–1489 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brooks AN and Hughes TJR (1982). Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Burman E and Hansbo P (2004). Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput Methods Appl Mech Eng 193: 1437–1453 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulation of bypass transistion. PhD thesis, Department of Civil and Environmental Engineering, Stanford UniversityGoogle Scholar
  13. 13.
    Chung J and Hulbert GM (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375 MATHMathSciNetGoogle Scholar
  14. 14.
    Codina R and Soto O (2004). Approximation of the incompressible Navier–Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput Methods Appl Mech Eng 193: 1403–1419 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng (accepted for publication)Google Scholar
  16. 16.
    Cohen E, Riesenfeld R and Elber G (2001). Geometric modeling with splines. An introduction. A K Peters Ltd, Wellesley MATHGoogle Scholar
  17. 17.
    Cottrell JA, Reali A, Bazilevs Y and Hughes TJR (2006). Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195: 5257–5297 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Coutinho ALGA, Diaz CM, Alvez JLD, Landau L, Loula AFD, Malta SMC, Castro RGS and Garcia ELM (2004). Stabilized methods and post-processing techniques for miscible displacements. Comput Methods Appl Mech Eng 193: 1421–1436 MATHCrossRefGoogle Scholar
  19. 19.
    Gravemeier V, Wall WA and Ramm E (2004). A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 193: 1323– 1366 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Harari I (2004). Stability of semidiscrete formulations for parabolic problems at small time steps. Comput Methods Appl Mech Eng 193: 1491–1516 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hauke G and Valiño L (2004). Computing reactive flows with a field Monte Carlo formulation and multi-scale methods. Comput Methods Appl Mech Eng 193: 1455–1470 MATHCrossRefGoogle Scholar
  22. 22.
    Hughes TJR and Mallet M (1986). A new finite element formulation for fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58: 305–328 MATHMathSciNetGoogle Scholar
  23. 23.
    Hughes TJR, Sangalli G (2006) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal (accepted). Available as ICES Report 05-46, UT AustinGoogle Scholar
  24. 24.
    Hughes TJR, Calo VM, Scovazzi G (2004) Variational and multiscale methods in turbulence. In: Gutkowski W, Kowalewski TA (eds) Proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM). Kluwer, DordrechtGoogle Scholar
  25. 25.
    Hughes TJR, Cottrell JA and Bazilevs Y (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Jansen KE, Whiting CH and Hulbert GM (1999). A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319 CrossRefMathSciNetGoogle Scholar
  27. 27.
    Johnson C (1987). Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Sweden MATHGoogle Scholar
  28. 28.
    Koobus B and Farhat C (2004). A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding. Comput Methods Appl Mech Eng 193: 1367–1383 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kravchenko AG, Moin P and Moser R (1996). Zonal embedded grids for numerical simulation of wall-bounded turbulent flows. J Comput Phys 127: 412–423 MATHCrossRefGoogle Scholar
  30. 30.
    Kravchenko AG, Moin P and Shariff K (1999). B-spline method and zonal grids for simulation of complex turbulent flows. J Comput Phys 151: 757–789 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kwok WY, Moser RD and Jiménez J (2001). A critical evaluation of the resolution properties of B-spline and compact finite difference methods. J Comput Phys 174: 510–551 MATHCrossRefGoogle Scholar
  32. 32.
    Lele SK (1992). Compact finite difference schemes with spectral-like resolution. J Comput Phys 103: 16–42 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Masud A and Khurram RA (2004). A multiscale/stabilized finite element method for the advection-diffusion equation. Comput Methods Appl Mech Eng 193: 1997–2018 MATHCrossRefGoogle Scholar
  34. 34.
    Moin P (2001). Fundamentals of engineering numerical analysis. Cambridge University Press, London MATHGoogle Scholar
  35. 35.
    Moser R, Kim J and Mansour R (1999). DNS of turbulent channel flow up to Re = 590. Phys Fluids 11: 943–945 CrossRefGoogle Scholar
  36. 36.
    Piegl L and Tiller W (1997). The NURBS book (Monographs in visual communication), 2nd edn. Springer, New York Google Scholar
  37. 37.
    Rogers DF (2001). An introduction to NURBS with historical perspective. Academic, San Diego Google Scholar
  38. 38.
    Scovazzi G (2004) Multiscale methods in science and engineering. PhD thesis, Department of Mechanical Engineering, Stanford Universty. Available at http://www.cs.sandia.gov/~gscovazGoogle Scholar
  39. 39.
    Shakib F, Hughes TJR and Johan Z (1991). A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89: 141–219 CrossRefMathSciNetGoogle Scholar
  40. 40.
    Shariff K and Moser RD (1998). Two-dimensional mesh embedding for B-spline methods. J Comput Phys 145: 471–488 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tezduyar TE (2003). Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575 MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Tezduyar TE and Sathe S (2004). Enhanced-discretization space-time technique (EDSTT). Comput Methods Appl Mech Eng 193: 1385–1401 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Tezduyar TE and Sathe S (2006). Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38: 456–468 CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • I. Akkerman
    • 1
  • Y. Bazilevs
    • 2
  • V. M. Calo
    • 2
  • T. J. R. Hughes
    • 2
  • S. Hulshoff
    • 1
  1. 1.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations