Skip to main content
Log in

Some challenges in computational vibro-acoustics: verification, validation and medium frequencies

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The simulation of the wave propagation phenomenon is one of the most challenging issue in the computational mechanics field. Many questions are still open among which we quote: the need for reliable error estimators, preferably in local or engineering quantities, the need for reliable updating methods with respect to material absorption parameters, and, finally, the need for more accurate numerical solutions, particularly to extend the frequency range that can be properly simulated by deterministic approaches. This paper gives an overview showing that the key issue to face all these challenges is the control of the pollution error, mainly caused by the dispersion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard J-F (1993) Propagation of sound in porous media. Elsevier, ISBN 185166887

  2. Almeida JP, Pereira O (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195:279–296

    Article  MATH  Google Scholar 

  3. Astley R, Macaulay G, Coyette J-P, Cremers L (1998) Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain. J Acoust Soc Am 103:49–63

    Article  Google Scholar 

  4. Babuška I, Ihlenburg F, Paik ET, Sauter SA (1995) A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput Methods Appl Mech Eng 128:325–359

    Article  MATH  Google Scholar 

  5. Babuška I, Melenk J (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    Article  MATH  Google Scholar 

  6. Babuska I, Ihlenburg F, Strouboulis T et al (1997) A posteriori error estimation for finite element solutions of Helmholtz’ equation .1. The quality of local indicators and estimators. Int J Numer Methods Eng 40(18):3443–3462

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Lu Y.Y, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  8. Bettess P, Laghrouche O, Perrey-Debain E (2004) Short-wave scattering—Introduction. Philos Trans Roy Soc London Ser A Math Phys Eng Sci 362(1816):417–419

    Article  MathSciNet  Google Scholar 

  9. Bouillard Ph, Suleau S (1998) Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect. Comput Methods Appl Mech Eng 162:317–335

    Article  MATH  Google Scholar 

  10. Bouillard Ph, Ihlenburg F (1999) Error estimation and adaptivity for the finite element solution in acoustics: 2D and 3D applications. Comput Methods Appl Mech Eng 176(1–4): 147–163

    Article  MATH  Google Scholar 

  11. Cheung YK, Jin WG, Zienkiewicz OC (1991) Solution of Helmholtz equation by Trefftz method. Int J Numer Methods Eng 32:63–78

    Article  MATH  Google Scholar 

  12. De Bel E, Villon P, Bouillard Ph (2005) Forced vibrations in the medium frequency range solved by a partition of unity method with local information. Int J Numer Methods Eng 62:1105–1126

    Article  MATH  Google Scholar 

  13. Debongnie JF, Zhong HG, Beckers P (1995) Dual analysis with general boundary conditions. Comput Methods Appl Mech Eng 122:183–192

    Article  MathSciNet  MATH  Google Scholar 

  14. Decouvreur V, Bouillard Ph, Deraemaeker A, Ladevèze P (2004) Validation of 2D acoustic models based on the error in constitutive relation. J Sound Vibration 278(4–5):773–787

    Article  Google Scholar 

  15. Decouvreur V, De Bel E, Bouillard Ph (2006) On the effect of the dispersion error when updating acoustic models. Comput Methods Appl Mecha Eng 195:394–405

    Article  MATH  Google Scholar 

  16. Deraemaeker A, Babuška I, Bouillard Ph (1999) Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int J Numer Methods Eng 46:471–500

    Article  MATH  Google Scholar 

  17. Desmet W, van Hal B, Sas P, Vandepitte D (2002) A computationally efficient prediction technique for the steady-state dynamics analysis of coupled vibro-acoustic systems. Adv Eng Softw 33:527–540

    Article  MATH  Google Scholar 

  18. Farhat C, Harari I, Franca LP (2001) The discontinuous enrichment method. Comput Methods Appl Mech Eng 190:6455–6479

    Article  MathSciNet  MATH  Google Scholar 

  19. Franca L, Farhat C, Macedo A, Lesoinne M (1997) Residual-free bubbles for the Helmholtz equation. Int J Numer Methods Eng 40:4003–4009

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabard G (2006) Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int J Numer Methods Eng 66(3):549–569

    Article  MathSciNet  MATH  Google Scholar 

  21. Gerdes K, Demkowicz L (1996) Solution of the 3D Helmholtz equation in arbitrary exterior domains using hp-FEM and IFEM. Comput Methods Appl Mech Eng 137: 239–273

    Article  MathSciNet  MATH  Google Scholar 

  22. Harari I, Hughes TJR (1992) Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. Comput Methods Appl Mech Eng 98(3):411–454

    Article  MathSciNet  MATH  Google Scholar 

  23. Harari I (2006) A survey of finite element methods for time-harmonic acoustics. Comput Methods App Mech Eng 195(13–16):1594–1607

    Article  MathSciNet  MATH  Google Scholar 

  24. Hazard L, De Bel E, Bouillard Ph, Sener J-Y, Migeot J-L (2004) Design of viscoelastic damping treatments in the medium frequency range. ISMA29. International Conference on noise and vibration engineering, Leuven

  25. Ihlenburg F, Babuška I (1995) Finite element solution of the Helmholtz equation with high wave number. Part 1: The h-version of the FEM. Comput Math Appl 38(9):9–37

    Article  Google Scholar 

  26. Lacroix V, Bouillard Ph, Villon P (2003) An iterative defect-correction type meshless method for acoustics. Int J Numer Methods Eng 57(15):2131–2146

    Article  MATH  Google Scholar 

  27. Ladevèze P (1996) A new computational approach for structure vibrations in the medium frequency range. C R Acad Sci Série IIb 322(12):849–856

    MATH  Google Scholar 

  28. Ladevèze P (1998) A modelling error estimator for dynamic model updating. In: Ladevèze P Oden JT (eds) On new advances in adaptative computational methods in mechanics. Elsevier, Amsterdam, pp 135–151

    Chapter  Google Scholar 

  29. Ladevèze P, Arnaud L, Rouch P, Blanzé C (2001) The variational theory of complex rays for the calculation of medium-frequency vibrations. Eng Comput 18(1/2):193–214

    Article  MATH  Google Scholar 

  30. Mertens T, Bouillard Ph, Astley J, Gamallo P, Hazard L (2006) Acoustic convected radiation using a partition of unity formulation, ICSV13, International Conference on sound and vibration, Vienna

  31. Morand P, Ohayon R (1995) Fluid-Structure Interaction. Wiley, Chichester

    MATH  Google Scholar 

  32. Oden JT, Belytschko T, Babuška I, Hughes TJR (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192:913–922

    Article  MATH  Google Scholar 

  33. Oden JT, Prudhomme S, Demkowicz L (2005) A posteriori error estimation for acoustic wave propagation problems. Arch Comput Meth Eng 12(4):343–389

    Article  MathSciNet  MATH  Google Scholar 

  34. Pereira O, Almeida JP, Maunder E (1999) Adaptive methods for hybrid equilibrium finite element models. Comput Methods Appl Mech Eng 176:19–39

    Article  MATH  Google Scholar 

  35. Prager W, Synge J (1947) Approximations in elasticity based on the concept of function space. Qu Appl Math 5(3): 241–269

    MathSciNet  MATH  Google Scholar 

  36. Thompson LL (2006), A review of finite element methods for time-harmonic acoustics. J Acoust Soc Am 119(3): 1315–1330

    Article  Google Scholar 

  37. Washizu K (1953) Bounds for solutions of boundary value problems in elasticity. J Math Phys 32:117–128

    MathSciNet  MATH  Google Scholar 

  38. Wilson D (1997) Simple relaxational models for the acoustical properties of porous media. Appl Acoust 50(3):171–188

    Article  Google Scholar 

  39. Zienkiewicz OC (2000) Achievements and some unsolved problems of the finite element method. Int J Numer Methods Eng 47:9–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Bouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillard, P., Almeida, J.P.M., Decouvreur, V. et al. Some challenges in computational vibro-acoustics: verification, validation and medium frequencies. Comput Mech 42, 317–326 (2008). https://doi.org/10.1007/s00466-006-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0153-7

Keywords

Navigation