Skip to main content
Log in

A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We will present a meshfree method based on the local partition of unity for cohesive cracks. The cracks are described by a jump in the displacement field for particles whose domain of influence is cut by the crack. Particles with partially cut domain of influence are enriched with branch functions. Crack propagation is governed by the material stability condition. Due to the smoothness and higher order continuity, the method is very accurate which is demonstrated for several quasi static and dynamic crack propagation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Comput Mech

  2. Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements (in press)

  3. Armero F, Garikipati K (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int J Solids Struct 33(20–22):2863–2885

    Article  MATH  MathSciNet  Google Scholar 

  4. Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report 81-13, Department of Structural Engineering, Cornell University Ithaka

  5. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  7. Belytschko T, Fish J, Englemann B (1988) A finite element method with embedded localization zones. Comput Methods Appl Mech Eng 70:59–89

    Article  MATH  Google Scholar 

  8. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  9. Belytschko T, Lu YY (1995) Element-free galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570

    Article  MATH  Google Scholar 

  10. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  11. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free galerkin methods. Eng Fracture Mech 51(2):295–315

    Article  Google Scholar 

  12. Belytschko T, Moes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4):993–1013

    Article  MATH  Google Scholar 

  13. Belytschko T, Rabczuk T, Samaniego E, Areias PMA (2006) Two- and three dimensional modelling of shear bands using a meshfree method with cohesive surfaces. Int J Numer Methods Eng (in press)

  14. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free galerkin methods. Int J Numer Methods Eng 39(6):923–938

    Article  MATH  Google Scholar 

  15. Bocca P, Carpinteri A, Valente S (1991) Mixed model fracture of concrete. Int J Solids Struct 33:2899–2938

    Google Scholar 

  16. Bocca P, Carpintieri A, Valente S (1990) Size effect in the mixed mode crack propagation: softening and snap-back analysis. Eng Fracture Mech 35:159–170

    Article  Google Scholar 

  17. Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids and Struct 33:2899–2938

    Article  MATH  Google Scholar 

  18. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038

    Article  MATH  Google Scholar 

  19. Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersection cracks with the extended finite element method. Int J Numer Methods Eng 48:1731–1760

    Article  Google Scholar 

  20. Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV 11(PR5):43–50

    Google Scholar 

  21. Fineberg J, Sharon E, Cohen G (2003) Crack front waves in dynamic fracture. Int J Fracture 121(1–2):55–69

    Article  Google Scholar 

  22. Gravouil A, Moes N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets – part ii: Level set update. Int J Numer Methods Eng 53:2569–2586

    Article  Google Scholar 

  23. Gummalla RR (1999) Effect of material and geometric parameters on deformations of a dynamically loaded prenotched plate. Master’s Thesis, Virginia Polytechnical Institute and State University

  24. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th international Symposium on Ballistics

  25. Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Loading Dyn Behav Mater 1:185–195

    Google Scholar 

  26. Krysl P, Belytschko T (1999) The element free galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Methods Eng 44(6):767–800

    Article  MATH  Google Scholar 

  27. Laborde P, Pommier J, Renard Y, Solau M (2005) Higher-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381

    Article  MATH  Google Scholar 

  28. Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. Proceedings ICM 1

  29. Lu YY, Belytschko T, Tabbara M (1995) Element-free galerkin method for wave-propagation and dynamic fracture. Comput Methods Appl Mech Eng 126(1–2):131–153

    Article  MATH  MathSciNet  Google Scholar 

  30. Melenk JM, Babuska I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MATH  MathSciNet  Google Scholar 

  31. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):133–150

    Article  Google Scholar 

  32. Moes N, Gravouil A, Belytschko T (2002) Non-planar 3-D crack growth by the extended finite element method and level sets, parti: mechanical model. Int J Numer Methods Eng 53(11):2549–2568

    Article  MATH  Google Scholar 

  33. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  MATH  Google Scholar 

  34. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    Article  MATH  Google Scholar 

  35. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63(11):1559–1582

    Article  MATH  MathSciNet  Google Scholar 

  36. Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fracture 90(1–2):83–102

    Article  Google Scholar 

  37. Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77

    Article  MATH  Google Scholar 

  38. Saehn S. Technische Bruchmechanik, Vorlesungsmanuskript. Technische Universitaet Dresden, Institut fuer Festkoerpermechanik

  39. Samaniego E, Oliver X, Huespe A (2003) Contributions to the continuum modelling of strong discontinuities in two-dimensional solids. PhD thesis, International Center for Numerical Methods in Engineering, Monograph CIMNE No. 72

  40. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128–7139

    Article  Google Scholar 

  41. Ventura G, Xu J, Belytschko (2002) A vector level set method and new discontinuity approximations for crack growth by efg. Int J Numer Methods Eng 54(6):923–944

    Article  MATH  Google Scholar 

  42. Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 6:A49–A53

    Google Scholar 

  43. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  44. Zhou F, Molinari JF (2004) Dynamic crack propagation with cohesive elements: a methodolgy to address mesh dependence. Int J Numer Methods Eng 59(1):1–24

    Article  MATH  Google Scholar 

  45. Zi G, Belytschko T (2003) New crack-tip elements for xfem and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240

    Article  MATH  Google Scholar 

  46. Zi G, Chen H, Xu J, Belytschko T (2005) The extended finite element method for dynamic fractures. Shock Vib 12(1):9–23

    Google Scholar 

  47. Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for grawing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Materials Sci Eng 12(1):901–915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timon Rabczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabczuk, T., Zi, G. A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks. Comput Mech 39, 743–760 (2007). https://doi.org/10.1007/s00466-006-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0067-4

Keywords

Navigation