Computational Mechanics

, Volume 38, Issue 4–5, pp 482–490 | Cite as

Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures

  • Ryo ToriiEmail author
  • Marie Oshima
  • Toshio Kobayashi
  • Kiyoshi Takagi
  • Tayfun E. Tezduyar
Original Paper


Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid–structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.


Cardiovascular modeling Fluid–structure interaction Patient-specific computation Hypertension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066Google Scholar
  2. 2.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Method Appl Mech Eng 32:199–259zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond (Biol) 177:109–159CrossRefGoogle Scholar
  4. 4.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Method Appl Mech Eng 119:73–94zbMATHCrossRefGoogle Scholar
  5. 5.
    Kaazempur-Mofrad MR, Ethier CR (2001) Mass transport in an anatomically realistic human right coronary artery. Ann Biomed Eng 29(2):121–127CrossRefGoogle Scholar
  6. 6.
    Karino T, Takeuchi S, Kobayashi N, Motomiya M, Mabuchi S (1993) Fluid dynamics of cerebrovascular disease (in Japanese). Neurosurgeons 12:15–24Google Scholar
  7. 7.
    Komatsu Y, Yasuda S, Shibata T, Ono Y, Hyodo A, Nose T (1994) Management for subarachnoid hemorrhage with negative initial angiography. Neurol Surg (in Japanese) 22:43–49Google Scholar
  8. 8.
    Loremson WE, Cline HE (1987) Marching Cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21(4): 163–169CrossRefGoogle Scholar
  9. 9.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042CrossRefGoogle Scholar
  10. 10.
    McDonald DA (1974) Blood flow in arteries, 2nd edn. Edward ArnoldGoogle Scholar
  11. 11.
    Oshima M, Torii R, Kobayashi T (2004) Simulation of blood flow in the cerebral arterial circle of Willis. In: Proceedings of WCCM6, ICCM, Beijing, China, pp CD-ROMGoogle Scholar
  12. 12.
    Prosi M, Zunino P, Perktold K, Quarteroni A (2005) Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J Biomech 38(4):903–917CrossRefGoogle Scholar
  13. 13.
    Raghavan ML, Vorp DA, Federie MP, Makaroun MS, Webster MW (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31(4):760–769CrossRefGoogle Scholar
  14. 14.
    Santamarina A, Weydahl E, Siegel JM, Moore JE (1998) Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Ann Biomed Eng 26(6):944–954CrossRefGoogle Scholar
  15. 15.
    Steiger HJ (1990) Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl 48:1–57Google Scholar
  16. 16.
    Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D Computation. Comput Method Appl Mech Eng 190:373–386zbMATHCrossRefGoogle Scholar
  17. 17.
    Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Method Appl Mech Eng 191:673–687zbMATHCrossRefGoogle Scholar
  18. 18.
    Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: Modeling and simulation techniques. J Aircraft 38:800–808Google Scholar
  19. 19.
    Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30:483–497CrossRefGoogle Scholar
  20. 20.
    Tang D, Yang C, Kobayashi S, Zheng J, Vito RP (2003) Effect of stenosis asymmetry on blood flow and artery compression: a three dimensional fluid-structure interaction model. Ann Biomed Eng 31(10):1182–1193CrossRefGoogle Scholar
  21. 21.
    Taylor CL, Yuan Z, Selman WR, Ratcheson RA, Rimm AA (1995) Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J Neurosurg 83:812–819CrossRefGoogle Scholar
  22. 22.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics 28:1–44zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Method Eng 8:83–130zbMATHCrossRefGoogle Scholar
  24. 24.
    Tezduyar TE (2004). Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes T (eds). Encyclopedia of Computational Mechanics, Volume 3: Wiley, New York, chap 17Google Scholar
  25. 25.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Method Appl Mech Eng 94(3):339–351zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, ASME, New York, PVP-Vol.246/AMD-Vol.143, pp 7–24Google Scholar
  27. 27.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Method Appl Mech Eng 94(3): 353–371zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Method Appl Mech Eng 95:221–242zbMATHCrossRefGoogle Scholar
  29. 29.
    Torii R, Oshima M, Kobayashi T, Takagi K (2001) Numerical simulation system for blood flow in the cerebral artery using CT imaging data. JSME Int J, Series C 44(4):982–989CrossRefGoogle Scholar
  30. 30.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Method Appl Mech Eng 195:1885–1895zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids published onlineGoogle Scholar
  32. 32.
    Vorp DA, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscl Throm Vas Biol 25(8):1558–1566CrossRefGoogle Scholar
  33. 33.
    Wan J, Steele B, Spicer SA, Strohband S, Feijoo GR, Hughes TJR, Taylor CA (2002) A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput Method Biomech Biomed Eng 5(3):195–206CrossRefGoogle Scholar
  34. 34.
    Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscos drag in arteries when the pressure gradient is known. J Physiol 127:553–563Google Scholar
  35. 35.
    Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vas Surg 5(3):413–420CrossRefGoogle Scholar
  36. 36.
    Zeng D, Ding Z, Friedman MH, Ethier CR (2003) Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng 31(4):420–429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ryo Torii
    • 1
    Email author
  • Marie Oshima
    • 2
  • Toshio Kobayashi
    • 3
  • Kiyoshi Takagi
    • 4
  • Tayfun E. Tezduyar
    • 5
  1. 1.Department of Chemical EngineeringImperial CollegeLondonUK
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  3. 3.Japan Automobile Research InstituteIbarakiJapan
  4. 4.Department of NeurosurgeryOgura HospitalTokyoJapan
  5. 5.Mechanical EngineeringRice University—MS 321HoustonUSA

Personalised recommendations