Skip to main content
Log in

Fractional Step Like Schemes for Free Surface Problems with Thermal Coupling Using the Lagrangian PFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The method presented in Aubry et al. (Comput Struc 83:1459–1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505–526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21(4):337–344

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrow K, Hurwicz L, Uzawa H (1958) Studies in linear and nonlinear programming. Stanford University Press, Stanford

    Google Scholar 

  3. Ashby SF, Manteuffel TA, Saylor PE (1990) A taxonomy for conjugate gradient methods. SIAM J Numer Anal 27(6):1542–1568

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubry R (2006) Incompressible Lagrangian fluid flow with thermal coupling. PhD thesis, Universidad Politécnica de Catalunya

  5. Aubry R, Idelsohn SR, Oñate E (2005) Particle finite element method in fluid mechanics including thermal convection-diffusion. Comput Struc 83:1459–1475

    Article  Google Scholar 

  6. Axelsson O, Barker VA (2001) Finite element solution of boundary value problems. Classics in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  7. Baiocchi C, Brezzi F, Franca LP (1993) Virtual bubbles and the Galerkin-least-squares methods. Comput Methods Appl Mech Eng 105:125–141

    Article  MathSciNet  MATH  Google Scholar 

  8. Bank RE, Welfert BD (1990) A comparison between the mini element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput Methods Appl Mech Eng 83:61–68

    Article  MathSciNet  MATH  Google Scholar 

  9. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  10. Benzi M, Tuma M (2003) A robust incomplete factorization preconditioner for positive definite matrices. Numer Linear Algebra Appl 10:385–400

    Article  MathSciNet  MATH  Google Scholar 

  11. Benzi M, Tuma M (2003) A robust preconditioner with low memory requirements for large sparse least square problems. Siam J Sci Comput 25(2):499–512

    Article  MathSciNet  MATH  Google Scholar 

  12. Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numerica 14:1–137

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertrand F, Tanguy PA (2002) Krylov-based Uzawa algorithms for the solution of the Stokes equations using discontinuous-pressure tetrahedral finite elements. J Comput Phys 181(2):617–638

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertrand F, Gadbois M, Tanguy PA (1992) Tetrahedral elements for fluid flow problems. Int J Numer Methods Eng 33:1251–1267

    Article  MathSciNet  MATH  Google Scholar 

  15. Blair Perot J (1993) An analysis of the fractional step method. J Comput Phys 108(1):51–58

    Article  MathSciNet  MATH  Google Scholar 

  16. Bollhöfer M (2001) A robust ILU with pivoting based on monitoring the growth of the inverse factors. Linear Algebra Appl 338:201–218

    Article  MathSciNet  MATH  Google Scholar 

  17. Bramble JH, Pasciak JE (1997) Iterative techniques for time dependent Stokes problems. Comput Math Appl 33:13–30

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  19. Cahouet J, Chabard JP (1988) Some fast 3D finite element solvers for the generalized Stokes problem. Int J Numer Methods Fluids 8:869–895

    Article  MathSciNet  Google Scholar 

  20. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comp 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciarlet PG, Raviart PA (1973) Maximum principle and uniform convergence for the finite element method. Comput Methods Appl Mech Eng 2:17–31

    Article  MathSciNet  MATH  Google Scholar 

  22. Codina R (2000) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 190:1579–1599

    MathSciNet  MATH  Google Scholar 

  23. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Phil Soc 43:50–64

    Article  MathSciNet  MATH  Google Scholar 

  24. Crouzeix M, Raviart PA (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Analyse Numérique, pp 33–76

  25. Dean EJ, Glowinski R (1993). On some finite element methods for the numerical simulation of incompressible viscous flow. In: Gunzburger MD, Nicolaides RA (eds). Incompressible computational fluid dynamics. Cambridge University Press, Cambridge, pp 17–65

    Google Scholar 

  26. Del Pin F, Idelsohn SR, Oñate E, Aubry R (2005) The ALE/Lagrangian Particle Finite Element Method: a new approach to computation of free-surface flows and fluid-object interactions. Comput Fluids (in press)

  27. Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    Article  MATH  Google Scholar 

  28. Eisenstat SC (1981) Efficient implementation of a class of preconditioned conjugate gradient methods. SIAM J Sci Stat Comput 2:1–4

    Article  MathSciNet  MATH  Google Scholar 

  29. Elman HC, Silvester DJ, Wathen AJ (2005) Finite elements and fast iterative solvers. Oxford University Press, New York

    MATH  Google Scholar 

  30. Franca LP, Farhat C (1995) Bubble functions prompt unusual stabilized finite element methods. Comput Methods Appl Mech Eng 123:299–308

    Article  MathSciNet  MATH  Google Scholar 

  31. Frey PJ, George PL (1999) Maillages, applications aux elements finis. Hermes, Paris

    Google Scholar 

  32. George PL ed. (2001) Maillage et adaptation. Lavoisier, Paris (in French)

    Google Scholar 

  33. Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equation. Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Gresho PM, Lee RL, Sani RL (1984) Further studies on equal-order interpolation for Navier-Stokes. In: Proceedings of the 5th international symposium on finite elements in flow problems. Austin, Texas

  35. Henriksen M, Holmen J (2002) Algebraic splitting for Navier-Stokes equations. J Comput Phys 175:438–453

    Article  MathSciNet  MATH  Google Scholar 

  36. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  37. Hughes TJR (2000) The Finite element method, linear static and dynamic finite element analysis. Dover Publishers, New York

    Google Scholar 

  38. Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58:329–339

    Article  MathSciNet  MATH  Google Scholar 

  39. Idelsohn SR, Oñate E, Del Pin F (2004) The Particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    Article  MATH  Google Scholar 

  40. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143

    Article  MATH  Google Scholar 

  41. Löhner R (2001) Applied CFD Techniques. Wiley, New York

    Google Scholar 

  42. Löhner R (2004) Projective prediction of pressure increments. Comm Numer Methods Eng 21:201–207

    Article  Google Scholar 

  43. Mardal KA, Winther R (2004) Uniform preconditioners for the time dependent Stokes problem. Numer Math 98(2):305–327

    Article  MathSciNet  MATH  Google Scholar 

  44. Mardal KA, Tai XC, Winther R (2002) A robust finite element method for Darcy-Stokes flow. SIAM J Numer Anal 40:1605–1631

    Article  MathSciNet  MATH  Google Scholar 

  45. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  46. Osher S, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York

    Google Scholar 

  47. Page CC, Saunders MA (1975) Solution of sparse indefinite systems of linear equations. Siam J Numer Anal 12(4):617–629

    Article  MathSciNet  Google Scholar 

  48. Pelletier D, Fortin A, Camarero R (1989) Are FEM solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!). Int J Numer Methods Fluids 9:99–112

    Article  MathSciNet  MATH  Google Scholar 

  49. Pichelin E, Coupez T (1999) A Taylor discontinuous Galerkin method for the thermal solution in 3d mold filling. Comput Methods Appl Mech Eng 178:153–169

    Article  MATH  Google Scholar 

  50. Pierre R (1989) Regularization procedures of mixed finite element approximations of the Stokes problem. Numer Methods Part Diff Eq 5:241–258

    Article  MathSciNet  MATH  Google Scholar 

  51. Pierre R (1995) Optimal selection of the bubble function in the stabilization of the P1-P1 element for the Stokes problem. Numer Methods Part Diff Eq 32(4):1210–1224

    MathSciNet  MATH  Google Scholar 

  52. Pierre R (1995) Simple C 0-approximations for the computations of incompressible flows. Comput Methods Appl Mech Eng 68:205–227

    Article  MathSciNet  Google Scholar 

  53. Prohl A (1997) Projection and Quasi–Compressibility Methods for solving the incompressible Navier–Stokes Equations. Teubner, Stuttgart

    MATH  Google Scholar 

  54. Quarteroni A, Saleri F, Veneziani A (2000) Factorization methods for the numerical approximation of Navier–Stokes equations. Comput Methods Appl Mech Eng 188:505–526

    Article  MathSciNet  MATH  Google Scholar 

  55. Roberts J, Thomas J (1991) Mixed and hybrid methods. In: Ciarlet P, Lions JL (eds) Handbook of numerical analysis, vol. 2. North-Holland, Amsterdam, pp 523–640

  56. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, 2nd edn. Philadelphia

    MATH  Google Scholar 

  57. Saleri F, Veneziani A (2005) Pressure correction algebraic splitting methods for the incompressible Navier–Stokes equations. SIAM J Numer Anal 43:174–194

    Article  MathSciNet  MATH  Google Scholar 

  58. Soulaimani A, Fortin M, Dhatt G, Ouellet Y, Bertrand F (1987) Simple continuous pressure elements for two- and three-dimensional incompressible flows. Comput Methods Appl Mech Eng 1:47–69

    Article  Google Scholar 

  59. Strang G, Fix G (1973) An analysis of the finite element method. Wellesley-Cambridge Press, Wellesley

    MATH  Google Scholar 

  60. Témam R (1969) Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. Arch Rat Mech Anal 32:135–153

    Article  MATH  Google Scholar 

  61. Tezduyar TE, Liou J, Ganjoo DJ (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struc 35:445–472

    Article  MATH  Google Scholar 

  62. Thomée V (1984) Galerkin finite element methods for parabolic problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  63. Thompson JF, Bharat S, Weatherill N (eds) (1999) Handbook of grid generation. CRC Press, West Palm Beach

    MATH  Google Scholar 

  64. Timmermans LJP, Minev PD, Van De Vosse FN (1996) An approximate projection scheme for incompressible flow using spectral elements. Int J Numer Methods Fluids 22:673–688

    Article  MATH  Google Scholar 

  65. Turek S (1999) Efficient solvers for incompressible flow problems–an algorithmic and computational approach. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  66. Verfürth R (1984) Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal Numer 18:175–182

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aubry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, R., Oñate, E. & Idelsohn, S.R. Fractional Step Like Schemes for Free Surface Problems with Thermal Coupling Using the Lagrangian PFEM. Comput Mech 38, 294–309 (2006). https://doi.org/10.1007/s00466-006-0058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0058-5

Keywords

Navigation