Skip to main content
Log in

Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An explicit a-posteriori error estimator based on the variational multiscale method is extended to higher-order elements. The technique is based on a recently derived explicit formula of the fine-scale Green’s function for higher-order elements. For the class of element-edge exact methods, the technique is able to predict the error exactly in any desired norm. It is shown that for elements of order k, the exact error depends on the k−1 derivative of the residual. The technique is applied to one-dimensional examples of fluid transport computed with stabilized methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden JT (2000) A posterior error estimation in finite element analysis. Wiley, New York

    Google Scholar 

  2. Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, second edition. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Brezzi F, Bristeau MO, Franca LP, Mallet M, Rogé G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Meth Appl Mech Eng 96:117–129

    Article  MATH  Google Scholar 

  4. Brezzi F, Russo A (1994) Choosing bubbles for advection-diffusion problems. Math Models Meth Appl Sci 4:571–587

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezzi F, Franca LP, Hughes TJR, Russo A (1997) b=∫ g. Comput Meth Appl Mech Eng 145:329–339

    Article  MATH  MathSciNet  Google Scholar 

  6. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Meth Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  7. Codina R, Oñate E, Cervera M (1992) The intrinsic time for the streamline upwind/Petrov–Galerkin formulation using quadratic elements. Comput Meth Appl Mech Eng 94:239–262

    Article  MATH  Google Scholar 

  8. Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Meth Appl Mech Eng 156:185–210

    Article  MATH  MathSciNet  Google Scholar 

  9. Franca LP, Frey SL, Hughes TJR (1992) Stabilized finite element methods: I Application to the advective-diffusive model. Comput Meth Appl Mech Eng 95:253–276

    Article  MATH  MathSciNet  Google Scholar 

  10. Franca LP, Russo A (1996) Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Appl Math Lett 9:83–88

    Article  MATH  MathSciNet  Google Scholar 

  11. Franca LP, Valentin F (2000) On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput Meth Appl Mech Eng 190:1785–1800

    Article  MATH  MathSciNet  Google Scholar 

  12. Hauke G, Doweidar MH (2006) Intrinsic scales and a-posteriori multiscale error estimation for piecewise-linear functions and residuals. Int J Comput Fluid Dyn (in press). DOI 10.1016/j.cma.2005.07.012

  13. Hauke G, Doweidar MH, Miana M (2006) The multiscale approach to error estimation and adaptivity. Comput Meth Appl Mech Eng 195:1573–1593

    Article  MATH  MathSciNet  Google Scholar 

  14. Hauke G, Doweidar MH, Miana M (2006) Proper intrinsic scales for a-posteriori multiscale error estimation. Comput Meth Appl Mech Eng DOI 10.1016/j.cma.2005.07.012

  15. Hauke G (2002) A simple stabilized method for the advection-diffusion-reaction equation. Comput Meth Appl Mech Eng 191:2925–2947

    Article  MATH  MathSciNet  Google Scholar 

  16. Hughes TJR (2000) The finite element method: Linear static and dynamic finite element analysis. Dover Publications

  17. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Meth Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  18. Hughes TJR, Feijoo GR, Mazzei L, Quincy JB (1998) The variational multiscale method: a paradigm for computational mechanics. Comput Meth Appl Mech Eng 166:3–24

    Article  MATH  MathSciNet  Google Scholar 

  19. Hughes TJR, Sangalli G (2005) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization and stabilized methods. ICES Report 05-46

  20. Russo A (1996) A posteriori error estimators via bubble functions. Math Models Meth Appl Sci 1:33–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Hauke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauke, G., Doweidar, M.H., Fuster, D. et al. Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements. Comput Mech 38, 382–389 (2006). https://doi.org/10.1007/s00466-006-0048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0048-7

Keywords

Navigation