Skip to main content
Log in

A generalized layerwise finite element for multi-layer damping treatments

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a 4-node facet type quadrangular shell finite element, based on a layerwise theory, developed for dynamic modelling of laminated structures with viscoelastic damping layers. The bending stiffness of the facet shell element is based on the Reissner–Mindlin assumptions and the plate theory is enriched with a shear locking protection adopting the MITC approach. The membrane component is corrected by using incompatible quadratic modes and the drilling degrees of freedom are introduced through a fictitious stiffness stabilization matrix. Linear static tests, using several pathological tests, showed good and convergent results. Dynamic analysis evaluation is provided by using two eigenproblems with exact analytical solution, as well as a conical sandwich shell with a closed-form analytical solution and a semi-analytical ring finite element solution. The applicability of the proposed finite element to viscoelastic core sandwich plates is assessed through experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Plouin A, Balmès E (1999) A test validated model of plates with constrained viscoelastic materials. Proceedings of IMAC XVII, Kissimmee, FL, USA:194–200

  • Moreira R, Rodrigues JD (2004) Constrained damping layer treatments: the finite element modelling. J Vibration Control 10(4):575–595

    Article  MATH  Google Scholar 

  • Johnson CD, Kienholz DA (1982) Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA J 20(9):1284–1290

    Google Scholar 

  • Lu YP, Killian JW, Evertine GC (1979) Vibrations of three layered damped sandwich plate composites. J Sound Vibration 64:63–71

    Article  Google Scholar 

  • Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press. Boca Raton

    Google Scholar 

  • Carrera E (2002) Theories and finite elements for multilayered anisotropic, composite plates and shells. Arch Comput Meth Eng 9(2):87–140

    MATH  MathSciNet  Google Scholar 

  • Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Meth Eng 10(3):215–296

    MATH  MathSciNet  Google Scholar 

  • Bhimaraddi A (1995) Sandwich beam theory and the analysis of constrained layer damping. J Sound Vibration 179(4):591–602

    Article  Google Scholar 

  • Saravanos DA, Pereira JM (1995) Dynamic characteristics of specialty composite structures with embedded damping layers. J Vibration Acoustics 117:62–69

    Google Scholar 

  • Cupial P, Niziol J (1995) Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer.J Sound Vibration 183(1):99–114

    Article  MATH  Google Scholar 

  • Suzuki K, Kageyama K, Kimpara I, Hotta S, Ozawa T, Kabashima S, Ozaki T (2003) Vibration and damping prediction of laminates with constrained viscoelastic layers – numerical analysis by a multilayer higher-order-deformable finite element and experimental observations. Mech Adv Mat Struct 10:43–75

    Article  MATH  Google Scholar 

  • Saravanos DA, Heyliger PR, Hopkins DA (1997) Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int J Solids Struct 34:359–378

    Article  MATH  Google Scholar 

  • Park CH, Baz A (2001) Comparison between finite element formulations of active constrained layer damping using classical and layer-wise laminate theory. Finite Elements in Anal Design 37:35–56

    Article  MATH  Google Scholar 

  • Plagianakos TS, Saravanos DA (2003) Hybrid multidamped composite plates with viscoelastic composite plies and shunted piezoelectric layers. J Intelligent Material Syst Struct 14:57–66

    Article  Google Scholar 

  • Kant T, Khare RK (1997) A higher-order facet quadrilateral composite shell element. Int J Numer Meth Eng 40:4477–4499

    Article  MATH  Google Scholar 

  • McTavish DJ, Hughes PC (1993) Modeling of linear viscoelastic space structures. J Vibration Acoust 115:103–110

    Article  Google Scholar 

  • Lesieutre GA, Bianchini, E (1995) Time domain modeling of linear viscoelasticity using anelastic displacement fields. J Vibration Acoust 117:424–430

    Google Scholar 

  • Bagley RL, Torvik PJ (1983) Fractional calculus - A different approach to the analysis of viscoelastically damped structures. AIAA J 21(5):741–748

    Article  MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The Finite Element Method. Vol 1 – The Basis. 5th edn. Butterworth Heinemann, Oxford, UK

  • Hughes T (2000) The Finite Element Method: Linear Static and Dyn Finite Element Anal. Dover Publications. New York, USA

    Google Scholar 

  • Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: S.T. Fenves, et al (eds.) Numer Comput Meth. Struct. Mech. Academic Press, pp. 43–57

  • Batoz J, Dhatt G (1995) Modélisation des Structures par Éléments Finis. Vol 1 – Solides Élastiques. Hermès Science Publications, France

  • MacNeal RH (1994) Finite Elements: Their Design and Performance. Mechanical Engineering (Faulkner LL edt). Vol.89. Marcel Dekker. USA

    Google Scholar 

  • Cook RD, Malkus DS, Plesha ME (1989) Concepts and Applications of Finite Element Analysis. 3rd edn. John Wiley & Sons. USA

  • Taylor RL, Beresford PJ, Wilson EL (1976) A nonconforming element for stress analysis. Int J Numer Meth Eng 10:1211–1219

    Article  MATH  Google Scholar 

  • Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Google Scholar 

  • Batoz J, Dhatt G (1990) Modélisation des Structures par Éléments Finis. Vol 2 – Poutres et Plaques. Hermès Science Publications, France

  • MacNeal RH, Harder RL (1988) A refined four-noded membrane element with rotational degrees of freedom. Comput Struct 28(1):75–84

    Article  MATH  Google Scholar 

  • Ibrahimbegovic A, Taylor RL, Wilson EL (1990) A robust quadrilateral membrane finite element with drilling degrees of freedom. Int J Numer Meth Eng 30:445–457

    Article  MATH  Google Scholar 

  • Cook RD (1994) Four-node `flat' shell element: drilling degrees of freedom, membrane-bending coupling, warped geometry and behaviour. Comput Struct 50(4):549–555

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The Finite Element Method. Vol 2 – Solid Mechanics. 5th edn, Butterworth Heinemann. Oxford, UK

  • Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Meth Eng 36:1413–1425

    Article  MATH  Google Scholar 

  • Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthquake Eng Struct Dyn 4(3):245–249

    Google Scholar 

  • Balmès E (2001) Structural Dynamics Toolbox, V5.0, SDTools, France

  • Morley LSD (1963) Skew Plates and Structures. Pergamon. Oxford, UK

  • Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong J S-J (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Meth Appl Mech Eng 51:221–258

    Article  MATH  MathSciNet  Google Scholar 

  • Batoz J, Dhatt G (1992) Modélisation des Structures par Éléments Finis. Vol 3 – Coques . Hermès Science Publications, France

  • MacNeal RH, Harder RL (1985) A proposed set of problems to test finite element accuracy. Finite Element Analysis Design 1:3–20

    Article  Google Scholar 

  • Srinivas S, Rao AK (1970) Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int J Solids Struct 6:1463–1481

    Article  MATH  Google Scholar 

  • Srinivas S (1973) A refined analysis of composite laminates. J Sound Vibration 30:495–507

    MATH  Google Scholar 

  • Pandya BN, Kant T (1988) Higher-order shear deformable theories for flexure of sandwich plates - Finite element evaluations. Int J Numer Meth Eng 24:1267–1286

    MATH  Google Scholar 

  • Meirovitch L (1967) Analytical Methods in Vibrations. MacMillan Publishing

  • Soedel W (1993) Vibrations of Shells and Plates. 2nd edn, Marcel Dekker

  • Wilkins DJ Jr , Bert CW, Egle DM (1970) Free vibrations of orthotropic sandwich conical shells with various boundary conditions. J Sound Vibration 13:211–228

    Article  MATH  Google Scholar 

  • Ramesh TC, Ganesan N (1994) Finite element analysis of conical shells with a constrained viscoelastic layer. J Sound Vibration 171:577–601

    Article  MATH  Google Scholar 

  • 3M (1993) ScotchDampTM Vibration Control Systems. 3M Specialties Division. St.Paul. MN, USA

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, R.A.S., Rodrigues, J.D. & Ferreira, A.J.M. A generalized layerwise finite element for multi-layer damping treatments. Comput Mech 37, 426–444 (2006). https://doi.org/10.1007/s00466-005-0714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0714-1

Keywords

Navigation