Skip to main content
Log in

Analysis of Electromechanical Stress Singularity in Piezoelectrics by Computed Eigensolutions and Hybrid-trefftz Finite Element Models

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper concerns the determination of singular electromechanical stress field in piezoelectrics. A one-dimensional finite element procedure is generalized to compute the eigensolutions of the singular electromechanical field. The generalized procedure is capable of taking differently poled piezoelectrics, cracks and ultra-thin electrodes into account. To determine the strength of the singular electromechanical stress field, the hybrid-Trefftz finite element method is adopted. The independently assumed electromechanical stress modes are extracted from the eigensolutions previously computed from the one-dimensional procedure. Since the eigensolutions satisfy all the balance conditions, the hybrid-Trefftz models can be constructed by boundary integration. This feature enables the models to be interfaced compatibly with conventional finite element models. To illustrate the efficacy of the present approach, the eigensolutions and/or parameters directly related to the electromechanical stress intensity in crack, interfacial crack and bimorph with embedded electrode are considered. The predictions are in good agreement with the reference solutions reported in the literature or computed by using over 10,000 conventional finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS (2001) ABAQUS Theory and user’s manuals, version 6.2. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, Rhode Island, USA

    Google Scholar 

  2. Atluri SN, Kobayashi AS, Nakagaki M (1975). An assumed displacement hybrid finite element method for fracture mechanics. Int J Fract 11:257–271

    Article  Google Scholar 

  3. Beom HG, Atluri SN (2002). Conducting cracks in dissimilar piezoelectric media. Int J Fract 118:285–301

    Article  Google Scholar 

  4. Chen MC, Sze KY, Wang HT (2001). Analysis of singular stresses in bonded biomaterial wedges by computed eigen solutions and hybrid element method. Commun Numer Methods Eng 17:495–507

    Article  MATH  Google Scholar 

  5. Dunn ML (1994) The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solid. Eng Fract Mech 48:25–39

    Article  Google Scholar 

  6. Eernisse EP (1967) Variational method for electrostatic vibration analysis. IEEE Trans Sonics Ultrasonics 14:153–160

    Google Scholar 

  7. Freitas JA, Ji ZY (1996) Hybrid-Trefftz equilibrium model for crack problems. Int J Numer Methods Eng 39:569–584

    Article  MATH  Google Scholar 

  8. Gao CF, Wang MZ (2000) Collinear permeable cracks between dissimilar piezoelectric materials. Int J Solid Struct 37:4969–4986

    Article  MATH  Google Scholar 

  9. Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–803

    Article  Google Scholar 

  10. IMSL (1997) IMSL Math/Library, Visual Numerics, Texas

  11. Kuo CM, Barnett DM (1991). Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu JJ, Ting TCT, Barnett DM (eds). Modern theory of anisotropic elasticity and applications. SIAM, Philadelphia, pp. 33–50

    Google Scholar 

  12. Lee J, Gao HJ (1995) A hybrid finite element analysis of interface cracks. Int J Numer Methods Eng 38:2465–2482

    Article  MATH  Google Scholar 

  13. McMeeking RM (1989) Electrostrictive stresses near crack-like flaws. J Appl Math Phys 40:615–627

    Article  MATH  Google Scholar 

  14. Ou ZC, Wu XJ (2003) On the crack-tip stress singularity of interfacial cracks in transverse isotropic bimaterials. Int J Solids Struct 40:7499–7511

    Article  MATH  Google Scholar 

  15. Pak YE (1990) Crack extension force in a piezoelectric material. J Appl Mech 57:647–653

    Article  MATH  Google Scholar 

  16. Park SB, Sun CT (1995) Effect of electric field on fracture of piezoelectric ceramics. Int J Fract 70:203–216

    Article  Google Scholar 

  17. Parton VZ (1976) Fracture mechanics of piezoelectric materials. Acta Astronautica 3:671–683

    Article  MATH  Google Scholar 

  18. Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element method. In: Proceedings of 3rd conference on matrix methods in structural mechanics, Wright-Patterson Air Force Base, AFFDL- TR-71–160, pp 661–682

  19. Pian THH, Chen DP (1983) On the suppression of zero energy deformation modes. Int J Numer Methods Eng 19:1741–1752

    Article  MATH  Google Scholar 

  20. Pian THH, Wu CC (1988) A rational approach for choosing stress terms for hybrid finite element formulations. Int J Numer Methods Eng 26:2331–2343

    Article  MATH  MathSciNet  Google Scholar 

  21. Piltner R (1985) Special finite elements with holes and internal cracks. Int J Numer Methods Eng 21:1471–1485

    Article  MATH  MathSciNet  Google Scholar 

  22. Qin QH (2003) Variational formulations for TFEM of piezoelectricity. Int J Solids Struct 40:6335–6346

    Article  MATH  Google Scholar 

  23. Qin QH, Yu SW (1997) An arbitrary-orientated plane crack terminating at the interface between dissimilar piezoelectric materials. Int J Solids Struct 34:581–590

    Article  MATH  Google Scholar 

  24. Ru C (2000a) Electrode-ceramic interfacial cracks in piezoelectric multilayer materials. J Appl Mech 67:255–261

    Article  MATH  Google Scholar 

  25. Ru C (2000b) Exact solution for finite electrode layers embedded at the interface of two piezoelectric half planes. J Mech Phys Solids 48:693–708

    Article  MathSciNet  MATH  Google Scholar 

  26. Sosa H (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29:2613–2622

    Article  MATH  Google Scholar 

  27. Sosa HA, Pak YE (1990) Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int J Solids Struct 26:1–15

    Article  MATH  Google Scholar 

  28. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MATH  MathSciNet  Google Scholar 

  29. Sze KY, Pan YS (1999) Hybrid piezoelectric finite element models for three-dimensional analysis. J Sound Vibrat 226:519–547

    Article  Google Scholar 

  30. Sze KY, Wang HT, Fan H (2001) A finite element approach for computing edge singularities in piezoelectric materials. Int J Solids Struct 38:9233–9252

    Article  MATH  Google Scholar 

  31. Sze KY, Yang XM, Yao LQ (2004) Stabilized plane and axisymmetric piezoelectric finite element models. Finite Elem Anal Des 40:1105–1122

    Article  Google Scholar 

  32. Wang TC, Han XL (1999) Fracture mechanics of piezoelectric materials. Int J Fract 98:15–35

    Article  Google Scholar 

  33. Xue WM, Karlovitz LZ, Atluri SN (1985) On the existence and stability conditions for mixed- hybrid finite element solutions based on Reissner’s variational principle. Int J Solids Struct 21:97–116

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Sze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.T., Sze, K.Y. & Yang, X.M. Analysis of Electromechanical Stress Singularity in Piezoelectrics by Computed Eigensolutions and Hybrid-trefftz Finite Element Models. Comput Mech 38, 551–564 (2006). https://doi.org/10.1007/s00466-005-0026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0026-5

Keywords

Navigation