Skip to main content
Log in

Analytical and hybrid solutions of diffusion problems within arbitrarily shaped regions via integral transforms

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

 Linear diffusion problems defined within irregular multidimensional regions are analytically solved through integral transforms, requiring numerical routines only for integration purposes, when a general functional boundary representation is considered. Auxiliary one-dimensional eigenvalue problems mapping the irregular region are applied with an integral transformation procedure so that the original differential Sturm–Liouville system gives place to an algebraic eigenvalue problem. The exact analytical inversion formula is then employed to yield the desired potential, explicitly, at any point within the domain. To allow for improved flexibility and further applicability, the related integration is simplified through an approximate boundary representation using lines connecting user provided points instead of the former exact representation of the irregular bounds, which is particularly advantageous when a functional description of the boundaries is not available. A cylindrical region test case with known exact solution is considered, and treated as an irregular region in the Cartesian coordinates system. Convergence behavior and error analysis are carefully undertaken and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 17 May 2001 / Accepted: 29 May 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sphaier, L., Cotta, R. Analytical and hybrid solutions of diffusion problems within arbitrarily shaped regions via integral transforms. Computational Mechanics 29, 265–276 (2002). https://doi.org/10.1007/s00466-002-0339-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-002-0339-6

Navigation