Skip to main content

Advertisement

Log in

Current applications of indocyanine green (ICG) in abdominal, gynecologic and urologic surgery: a meta-review and quality analysis with use of the AMSTAR 2 instrument

  • Review Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

A Correction to this article was published on 12 February 2024

A Correction to this article was published on 12 December 2023

This article has been updated

Abstract

Background

Indocyanine green (ICG) is an injectable fluorochrome that has recently gained popularity as a means of assisting intraoperative visualization during laparoscopic and robotic surgery. Many systematic reviews and meta-analyses have been published. We conducted a meta-review to synthesize the findings of these studies.

Methods

PubMed and Embase were searched to identify systematic reviews and meta-analyses coping with the uses of ICG in abdominal operations, including Metabolic Bariatric Surgery, Cholecystectomy, Colorectal, Esophageal, Gastric, Hepato-Pancreato-Biliary, Obstetrics and Gynecology (OG), Pediatric Surgery, Surgical Oncology, Urology, (abdominal) Vascular Surgery, Adrenal and Splenic Surgery, and Interdisciplinary tasks, until September 2023. We submitted the retrieved meta-analyses to qualitative analysis based on the AMSTAR 2 instrument.

Results

We identified 116 studies, 41 systematic reviews (SRs) and 75 meta-analyses (MAs), spanning 2013–2023. The most thoroughly investigated (sub)specialties were Colorectal (6 SRs, 25 MAs), OG (9 SRs, 15 MAs), and HPB (4 SRs, 12 MAs). Interestingly, there was high heterogeneity regarding the administered ICG doses, routes, and timing. The use of ICG offered a clear benefit regarding anastomotic leak prevention, particularly after colorectal and esophageal surgery. There was no clear benefit regarding sentinel node detection after OG. According to the AMSTAR 2 tool, most meta-analyses ranked as “critically low” (34.7%) or “low” (58.7%) quality. There were only five meta-analyses (6.7%) that qualified as “moderate” quality, whereas there were no “high” quality reviews.

Conclusions

Regardless of the abundance of pertinent literature and reviews, surgeons should be cautious when interpreting their results on ICG use in abdominal surgery. Future reviews should focus on ensuring methodological vigor; establishing clear protocols of ICG dose, route of administration, and timing; and improving reporting quality. Other sources of data (e.g., registries) and novel methods of data analysis (e.g., machine learning) might also contribute to an enhanced role of ICG as a decision-making tool in surgery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Cassinotti E et al (2023) European Association for Endoscopic Surgery (EAES) consensus on Indocyanine Green (ICG) fluorescence-guided surgery. Surg Endosc 37(3):1629–1648. https://doi.org/10.1007/s00464-023-09928-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mortensen OE, Nerup N, Thorsteinsson M, Svendsen MBS, Shiwaku H, Achiam MP (2020) Fluorescence guided intraluminal endoscopy in the gastrointestinal tract: a systematic review. World J Gastrointest Endosc 12(10):388–400. https://doi.org/10.4253/wjge.v12.i10.388

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zelken JA, Tufaro AP (2015) Current trends and emerging future of indocyanine green usage in surgery and oncology: an update. Ann Surg Oncol 22(Suppl 3):S1271–S1283. https://doi.org/10.1245/s10434-015-4743-5

    Article  PubMed  Google Scholar 

  4. Xu P-Y, Zheng X, Kankala RK, Wang S-B, Chen A-Z (2021) Advances in indocyanine green-based codelivery nanoplatforms for combinatorial therapy. ACS Biomater Sci Eng 7(3):939–962. https://doi.org/10.1021/acsbiomaterials.0c01644

    Article  CAS  PubMed  Google Scholar 

  5. Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shea BJ et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008. https://doi.org/10.1136/bmj.j4008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng S-T, Zhang F (2020) A comprehensive meta-review of systematic reviews and meta-analyses on nonpharmacological interventions for informal dementia caregivers. BMC Geriatr 20(1):137. https://doi.org/10.1186/s12877-020-01547-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gillespie BM et al (2020) Preoperative and postoperative recommendations to surgical wound care interventions: a systematic meta-review of Cochrane reviews. Int J Nurs Stud 102:103486. https://doi.org/10.1016/j.ijnurstu.2019.103486

    Article  PubMed  Google Scholar 

  9. Hsu A, Mu SZ, James A, Ibrahim MA, Saber AA (2023) Indocyanine green in bariatric surgery: a systematic review. Obes Surg. https://doi.org/10.1007/s11695-023-06801-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wityk M, Dowgiałło-Gornowicz N, Feszak I, Bobowicz M (2023) Fluorescence use in minimally invasive metabolic and bariatric surgery—a systematic review of the literature. Langenbecks Arch Surg 408(1):216. https://doi.org/10.1007/s00423-023-02955-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pesce A, Piccolo G, La Greca G, Puleo S (2015) Utility of fluorescent cholangiography during laparoscopic cholecystectomy: a systematic review. World J Gastroenterol 21(25):7877–7883. https://doi.org/10.3748/wjg.v21.i25.7877

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serban D et al (2022) Systematic review of the role of indocyanine green near-infrared fluorescence in safe laparoscopic cholecystectomy (review). Exp Ther Med 23(2):187. https://doi.org/10.3892/etm.2021.11110

    Article  CAS  PubMed  Google Scholar 

  13. van den Bos J, Wieringa FP, Bouvy ND, Stassen LPS (2018) Optimizing the image of fluorescence cholangiography using ICG: a systematic review and ex vivo experiments. Surg Endosc 32(12):4820–4832. https://doi.org/10.1007/s00464-018-6233-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brollo PP et al (2023) Preventing iatrogenic ureteral injury in colorectal surgery: a comprehensive and systematic review of the last 2 decades of literature and future perspectives. Surg Today. https://doi.org/10.1007/s00595-022-02639-9

    Article  PubMed  Google Scholar 

  15. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, Ishizawa T (2017) Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 43(9):1656–1667. https://doi.org/10.1016/j.ejso.2017.04.015

    Article  CAS  Google Scholar 

  16. Liberale G et al (2018) Indocyanine green fluorescence imaging for sentinel lymph node detection in colorectal cancer: a systematic review. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 44(9):1301–1306. https://doi.org/10.1016/j.ejso.2018.05.034

    Article  Google Scholar 

  17. Mizrahi I, Wexner SD (2017) Clinical role of fluorescence imaging in colorectal surgery—a review. Expert Rev Med Devices 14(1):75–82. https://doi.org/10.1080/17434440.2017.1265444

    Article  CAS  PubMed  Google Scholar 

  18. Nachiappan S, Askari A, Currie A, Kennedy RH, Faiz O (2014) Intraoperative assessment of colorectal anastomotic integrity: a systematic review. Surg Endosc 28(9):2513–2530. https://doi.org/10.1007/s00464-014-3520-z

    Article  PubMed  Google Scholar 

  19. Tejedor P, Sagias F, Khan JS (2020) The use of enhanced technologies in robotic surgery and its impact on outcomes in rectal cancer: a systematic review. Surg Innov 27(4):384–391. https://doi.org/10.1177/1553350620928277

    Article  PubMed  Google Scholar 

  20. Koyanagi K et al (2022) Indocyanine green fluorescence imaging for evaluating blood flow in the reconstructed conduit after esophageal cancer surgery. Surg Today 52(3):369–376. https://doi.org/10.1007/s00595-021-02296-4

    Article  CAS  PubMed  Google Scholar 

  21. Van Daele E et al (2019) Near-infrared fluorescence guided esophageal reconstructive surgery: a systematic review. World J Gastrointest Oncol 11(3):250–263. https://doi.org/10.4251/wjgo.v11.i3.250

    Article  PubMed  PubMed Central  Google Scholar 

  22. Can MF, Yagci G, Cetiner S (2013) Systematic review of studies investigating sentinel node navigation surgery and lymphatic mapping for gastric cancer. J Laparoendosc Adv Surg Tech A 23(8):651–662. https://doi.org/10.1089/lap.2012.0311

    Article  PubMed  Google Scholar 

  23. Felli E et al (2021) Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging. HPB 23(11):1647–1655. https://doi.org/10.1016/j.hpb.2021.05.006

    Article  PubMed  Google Scholar 

  24. Potharazu AV, Gangemi A (2023) Indocyanine green (ICG) fluorescence in robotic hepatobiliary surgery: a systematic review. Int. J. Med. Robot. Comput. Assist. Surg. 19(1):e2485. https://doi.org/10.1002/rcs.2485

    Article  Google Scholar 

  25. Tomassini F, Giglio MC, De Simone G, Montalti R, Troisi RI (2020) Hepatic function assessment to predict post-hepatectomy liver failure: what can we trust? A systematic review. Updat Surg 72(4):925–938. https://doi.org/10.1007/s13304-020-00859-7

    Article  Google Scholar 

  26. Wakabayashi T et al (2022) Indocyanine green fluorescence navigation in liver surgery: a systematic review on dose and timing of administration. Ann Surg 275(6):1025–1034. https://doi.org/10.1097/SLA.0000000000005406

    Article  PubMed  Google Scholar 

  27. Al-Taher M et al (2018) Intraoperative enhanced imaging for detection of endometriosis: a systematic review of the literature. Eur J Obstet Gynecol Reprod Biol 224:108–116. https://doi.org/10.1016/j.ejogrb.2018.03.020

    Article  PubMed  Google Scholar 

  28. Boussedra S et al (2022) Fluorescence guided surgery to improve peritoneal cytoreduction in epithelial ovarian cancer: a systematic review of available data. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 48(6):1217–1223. https://doi.org/10.1016/j.ejso.2022.02.022

    Article  Google Scholar 

  29. Dell’Orto F, Laven P, Delle Marchette M, Lambrechts S, Kruitwagen R, Buda A (2019) Feasibility of sentinel lymph node mapping of the ovary: a systematic review. Int J Gynecol Cancer 29(7):1209–1215. https://doi.org/10.1136/ijgc-2019-000606

    Article  PubMed  Google Scholar 

  30. Ianieri MM et al (2021) Indocyanine green in the surgical management of endometriosis: a systematic review. Acta Obstet Gynecol Scand 100(2):189–199. https://doi.org/10.1111/aogs.13971

    Article  PubMed  Google Scholar 

  31. Koual M, Benoit L, Nguyen-Xuan H-T, Bentivegna E, Azaïs H, Bats A-S (2021) Diagnostic value of indocyanine green fluorescence guided sentinel lymph node biopsy in vulvar cancer: a systematic review. Gynecol Oncol 161(2):436–441. https://doi.org/10.1016/j.ygyno.2021.01.031

    Article  CAS  PubMed  Google Scholar 

  32. Raffone A et al (2022) The use of near infra-red radiation imaging after injection of indocyanine green (NIR-ICG) during laparoscopic treatment of benign gynecologic conditions: towards minimalized surgery: a systematic review of literature. Med. Kaunas Lith. 58(6):792. https://doi.org/10.3390/medicina58060792

    Article  Google Scholar 

  33. Rocha A, Domínguez AM, Lécuru F, Bourdel N (2016) Indocyanine green and infrared fluorescence in detection of sentinel lymph nodes in endometrial and cervical cancer staging—a systematic review. Eur J Obstet Gynecol Reprod Biol 206:213–219. https://doi.org/10.1016/j.ejogrb.2016.09.027

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Zhang Y, Yang H, Xu Y (2022) Maternal-fetal transfer of indocyanine green: a systematic review. J Matern Fetal Neonatal Med 35(25):8181–8185. https://doi.org/10.1080/14767058.2021.1966410

    Article  PubMed  Google Scholar 

  35. Zapardiel I et al (2021) Utility of intraoperative fluorescence imaging in gynecologic surgery: systematic review and consensus statement. Ann Surg Oncol 28(6):3266–3278. https://doi.org/10.1245/s10434-020-09222-x

    Article  PubMed  Google Scholar 

  36. Alghoul H, Farajat FA, Alser O, Snyr AR, Harmon CM, Novotny NM (2022) Intraoperative uses of near-infrared fluorescence spectroscopy in pediatric surgery: a systematic review. J Pediatr Surg 57(6):1137–1144. https://doi.org/10.1016/j.jpedsurg.2022.01.039

    Article  PubMed  Google Scholar 

  37. Breuking EA, van Varsseveld OC, Harms M, Tytgat SHAJ, Hulscher JBF, Ruiterkamp J (2023) Safety and feasibility of indocyanine green fluorescence angiography in pediatric gastrointestinal surgery: a systematic review. J Pediatr Surg 58(8):1534–1542. https://doi.org/10.1016/j.jpedsurg.2022.10.045

    Article  PubMed  Google Scholar 

  38. Le-Nguyen A, O’Neill Trudeau M, Dodin P, Keezer MR, Faure C, Piché N (2021) The use of indocyanine green fluorescence angiography in pediatric surgery: a systematic review and narrative analysis. Front Pediatr 9:736242. https://doi.org/10.3389/fped.2021.736242

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paraboschi I, De Coppi P, Stoyanov D, Anderson J, Giuliani S (2021) Fluorescence imaging in pediatric surgery: state-of-the-art and future perspectives. J Pediatr Surg 56(4):655–662. https://doi.org/10.1016/j.jpedsurg.2020.08.004

    Article  PubMed  Google Scholar 

  40. Baiocchi GL, Gheza F, Molfino S, Arru L, Vaira M, Giacopuzzi S (2020) Indocyanine green fluorescence-guided intraoperative detection of peritoneal carcinomatosis: systematic review. BMC Surg 20(1):158. https://doi.org/10.1186/s12893-020-00821-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sposito C et al (2022) Indocyanine green fluorescence-guided surgery for gastrointestinal tumors: a systematic review. Ann Surg Open 3(3):e190. https://doi.org/10.1097/AS9.0000000000000190

    Article  PubMed  PubMed Central  Google Scholar 

  42. Autorino R et al (2014) Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology 84(4):751–759. https://doi.org/10.1016/j.urology.2014.05.059

    Article  PubMed  Google Scholar 

  43. Cacciamani GE et al (2020) Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol 38(4):883–896. https://doi.org/10.1007/s00345-019-02870-z

    Article  PubMed  Google Scholar 

  44. Rodler S et al (2023) A systematic review of new imaging technologies for robotic prostatectomy: from molecular imaging to augmented reality. J Clin Med 12(16):5425. https://doi.org/10.3390/jcm12165425

    Article  PubMed  PubMed Central  Google Scholar 

  45. Al-Taher M et al (2022) Near infrared fluorescence imaging of the urethra: a systematic review of the literature. Minim Invasive Ther Allied Technol 31(3):342–349. https://doi.org/10.1080/13645706.2020.1826974

    Article  PubMed  Google Scholar 

  46. Degett TH, Andersen HS, Gögenur I (2016) Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 401(6):767–775. https://doi.org/10.1007/s00423-016-1400-9

    Article  PubMed  Google Scholar 

  47. Schols RM, Connell NJ, Stassen LPS (2015) Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg 39(5):1069–1079. https://doi.org/10.1007/s00268-014-2911-6

    Article  PubMed  Google Scholar 

  48. Slooter MD, Janssen A, Bemelman WA, Tanis PJ, Hompes R (2019) Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters: a systematic review. Tech Coloproctol 23(4):305–313. https://doi.org/10.1007/s10151-019-01973-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slooter MD et al (2021) Defining indocyanine green fluorescence to assess anastomotic perfusion during gastrointestinal surgery: systematic review. BJS Open 5(2):zraa074. https://doi.org/10.1093/bjsopen/zraa074

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dip F, LoMenzo E, White KP, Rosenthal RJ (2021) Does near-infrared fluorescent cholangiography with indocyanine green reduce bile duct injuries and conversions to open surgery during laparoscopic or robotic cholecystectomy? A meta-analysis. Surgery 169(4):859–867. https://doi.org/10.1016/j.surg.2020.12.008

    Article  PubMed  Google Scholar 

  51. Lim SH, Tan HTA, Shelat VG (2021) Comparison of indocyanine green dye fluorescent cholangiography with intra-operative cholangiography in laparoscopic cholecystectomy: a meta-analysis. Surg Endosc 35(4):1511–1520. https://doi.org/10.1007/s00464-020-08164-5

    Article  PubMed  Google Scholar 

  52. Liu Y et al (2020) A meta-analysis of indocyanine green fluorescence image-guided laparoscopic cholecystectomy for benign gallbladder disease. Photodiagnosis Photodyn Ther 32:101948. https://doi.org/10.1016/j.pdpdt.2020.101948

    Article  CAS  PubMed  Google Scholar 

  53. Vlek SL et al (2017) Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review. Surg Endosc 31(7):2731–2742. https://doi.org/10.1007/s00464-016-5318-7

    Article  CAS  PubMed  Google Scholar 

  54. Ankersmit M, Bonjer HJ, Hannink G, Schoonmade LJ, van der Pas MHGM, Meijerink WJHJ (2019) Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with meta-analysis. Tech Coloproctol 23(12):1113–1126. https://doi.org/10.1007/s10151-019-02107-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arezzo A et al (2020) Intraoperative use of fluorescence with indocyanine green reduces anastomotic leak rates in rectal cancer surgery: an individual participant data analysis. Surg Endosc 34(10):4281–4290. https://doi.org/10.1007/s00464-020-07735-w

    Article  PubMed  Google Scholar 

  56. Blanco-Colino R, Espin-Basany E (2018) Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol 22(1):15–23. https://doi.org/10.1007/s10151-017-1731-8

    Article  CAS  PubMed  Google Scholar 

  57. Chan DKH, Lee SKF, Ang JJ (2020) Indocyanine green fluorescence angiography decreases the risk of colorectal anastomotic leakage: systematic review and meta-analysis. Surgery 168(6):1128–1137. https://doi.org/10.1016/j.surg.2020.08.024

    Article  PubMed  Google Scholar 

  58. Deng J et al (2022) Meta analysis of indocyanine green fluorescence in patients undergoing laparoscopic colorectal cancer surgery. Front Oncol 12:1010122. https://doi.org/10.3389/fonc.2022.1010122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emile SH et al (2017) Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: systematic review and meta-analysis. J Surg Oncol 116(6):730–740. https://doi.org/10.1002/jso.24701

    Article  PubMed  Google Scholar 

  60. Emile SH, Khan SM, Wexner SD (2022) Impact of change in the surgical plan based on indocyanine green fluorescence angiography on the rates of colorectal anastomotic leak: a systematic review and meta-analysis. Surg Endosc 36(4):2245–2257. https://doi.org/10.1007/s00464-021-08973-2

    Article  PubMed  Google Scholar 

  61. Kryzauskas M et al (2020) Intraoperative testing of colorectal anastomosis and the incidence of anastomotic leak: a meta-analysis. Medicine (Baltimore) 99(47):e23135. https://doi.org/10.1097/MD.0000000000023135

    Article  PubMed  Google Scholar 

  62. Li Z et al (2021) Meta-analysis on the efficacy of indocyanine green fluorescence angiography for reduction of anastomotic leakage after rectal cancer surgery. Am Surg 87(12):1910–1919. https://doi.org/10.1177/0003134820982848

    Article  PubMed  Google Scholar 

  63. Lin J, Zheng B, Lin S, Chen Z, Chen S (2021) The efficacy of intraoperative ICG fluorescence angiography on anastomotic leak after resection for colorectal cancer: a meta-analysis. Int J Colorectal Dis 36(1):27–39. https://doi.org/10.1007/s00384-020-03729-1

    Article  CAS  PubMed  Google Scholar 

  64. Liu D, Liang L, Liu L, Zhu Z (2021) Does intraoperative indocyanine green fluorescence angiography decrease the incidence of anastomotic leakage in colorectal surgery? A systematic review and meta-analysis. Int J Colorectal Dis 36(1):57–66. https://doi.org/10.1007/s00384-020-03741-5

    Article  PubMed  Google Scholar 

  65. Lucas K et al (2023) Lymphatic mapping in colon cancer depending on injection time and tracing agent: a systematic review and meta-analysis of prospective designed studies. Cancers 15(12):3196. https://doi.org/10.3390/cancers15123196

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mok HT et al (2020) Indocyanine green fluorescent imaging on anastomotic leakage in colectomies: a network meta-analysis and systematic review. Int J Colorectal Dis 35(12):2365–2369. https://doi.org/10.1007/s00384-020-03723-7

    Article  PubMed  Google Scholar 

  67. Pang H-Y et al (2021) Indocyanine green fluorescence angiography prevents anastomotic leakage in rectal cancer surgery: a systematic review and meta-analysis. Langenbecks Arch Surg 406(2):261–271. https://doi.org/10.1007/s00423-020-02077-6

    Article  PubMed  Google Scholar 

  68. Qiao L (2020) Sentinel lymph node mapping for metastasis detection in colorectal cancer: a systematic review and meta-analysis. Rev Espanola Enfermedades Dig 112(9):722–730. https://doi.org/10.17235/reed.2020.6767/2019

    Article  Google Scholar 

  69. Rausa E et al (2019) A standardized use of intraoperative anastomotic testing in colorectal surgery in the new millennium: is technology taking over? A systematic review and network meta-analysis. Tech Coloproctol 23(7):625–631. https://doi.org/10.1007/s10151-019-02034-6

    Article  CAS  PubMed  Google Scholar 

  70. Renna MS et al (2023) Intraoperative bowel perfusion assessment methods and their effects on anastomotic leak rates: meta-analysis. Br J Surg 110(9):1131–1142. https://doi.org/10.1093/bjs/znad154

    Article  PubMed  PubMed Central  Google Scholar 

  71. Safiejko K et al (2022) Safety and efficacy of indocyanine green in colorectal cancer surgery: a systematic review and meta-analysis of 11,047 patients. Cancers 14(4):1036. https://doi.org/10.3390/cancers14041036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen R, Zhang Y, Wang T (2018) Indocyanine green fluorescence angiography and the incidence of anastomotic leak after colorectal resection for colorectal cancer: a meta-analysis. Dis Colon Rectum 61(10):1228–1234. https://doi.org/10.1097/DCR.0000000000001123

    Article  PubMed  Google Scholar 

  73. Shen Y, Yang T, Yang J, Meng W, Wang Z (2020) Intraoperative indocyanine green fluorescence angiography to prevent anastomotic leak after low anterior resection for rectal cancer: a meta-analysis. ANZ J Surg 90(11):2193–2200. https://doi.org/10.1111/ans.15809

    Article  PubMed  Google Scholar 

  74. Song M et al (2021) Assessment of intraoperative use of indocyanine green fluorescence imaging on the incidence of anastomotic leakage after rectal cancer surgery: a PRISMA-compliant systematic review and meta-analysis. Tech Coloproctol 25(1):49–58. https://doi.org/10.1007/s10151-020-02335-1

    Article  CAS  PubMed  Google Scholar 

  75. Tang G, Du D, Tao J, Wei Z (2022) Effect of indocyanine green fluorescence angiography on anastomotic leakage in patients undergoing colorectal surgery: a meta-analysis of randomized controlled trials and propensity-score-matched studies. Front Surg 9:815753. https://doi.org/10.3389/fsurg.2022.815753

    Article  PubMed  PubMed Central  Google Scholar 

  76. Trastulli S, Munzi G, Desiderio J, Cirocchi R, Rossi M, Parisi A (2021) Indocyanine green fluorescence angiography versus standard intraoperative methods for prevention of anastomotic leak in colorectal surgery: meta-analysis. Br J Surg 108(4):359–372. https://doi.org/10.1093/bjs/znaa139

    Article  CAS  PubMed  Google Scholar 

  77. Villegas-Tovar E et al (2020) Performance of Indocyanine green for sentinel lymph node mapping and lymph node metastasis in colorectal cancer: a diagnostic test accuracy meta-analysis. Surg Endosc 34(3):1035–1047. https://doi.org/10.1007/s00464-019-07274-z

    Article  CAS  PubMed  Google Scholar 

  78. Xia S, Wu W, Luo L, Ma L, Yu L, Li Y (2023) Indocyanine green fluorescence angiography decreases the risk of anastomotic leakage after rectal cancer surgery: a systematic review and meta-analysis. Front Med 10:1157389. https://doi.org/10.3389/fmed.2023.1157389

    Article  Google Scholar 

  79. Zhang W, Che X (2021) Effect of indocyanine green fluorescence angiography on preventing anastomotic leakage after colorectal surgery: a meta-analysis. Surg Today 51(9):1415–1428. https://doi.org/10.1007/s00595-020-02195-0

    Article  CAS  PubMed  Google Scholar 

  80. Casas MA, Angeramo CA, Bras Harriott C, Dreifuss NH, Schlottmann F (2022) Indocyanine green (ICG) fluorescence imaging for prevention of anastomotic leak in totally minimally invasive Ivor Lewis esophagectomy: a systematic review and meta-analysis. Dis Esophagus 35(4):doab056. https://doi.org/10.1093/dote/doab056

    Article  PubMed  Google Scholar 

  81. Hong Z-N, Huang L, Zhang W, Kang M (2022) Indocyanine green fluorescence using in conduit reconstruction for patients with esophageal cancer to improve short-term clinical outcome: a meta-analysis. Front Oncol 12:847510. https://doi.org/10.3389/fonc.2022.847510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jimenez-Lillo J et al (2021) Performance of indocyanine-green imaging for sentinel lymph node mapping and lymph node metastasis in esophageal cancer: systematic review and meta-analysis. Ann Surg Oncol 28(9):4869–4877. https://doi.org/10.1245/s10434-021-09617-4

    Article  PubMed  Google Scholar 

  83. Ladak F et al (2019) Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis. Surg Endosc 33(2):384–394. https://doi.org/10.1007/s00464-018-6503-7

    Article  PubMed  Google Scholar 

  84. Slooter MD, Eshuis WJ, Cuesta MA, Gisbertz SS, van Berge Henegouwen MI (2019) Fluorescent imaging using indocyanine green during esophagectomy to prevent surgical morbidity: a systematic review and meta-analysis. J Thorac Dis 11(Suppl 5):S755–S765. https://doi.org/10.21037/jtd.2019.01.30

    Article  PubMed  PubMed Central  Google Scholar 

  85. Deng C et al (2022) Safety and efficacy of indocyanine green near-infrared fluorescent imaging-guided lymph nodes dissection during radical gastrectomy for gastric cancer: a systematic review and meta-analysis. Front Oncol 12:917541. https://doi.org/10.3389/fonc.2022.917541

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dong B, Zhang A, Zhang Y, Ye W, Liao L, Li Z (2022) Efficacy of indocyanine green fluorescence imaging-guided lymphadenectomy in radical gastrectomy for gastric cancer: a systematic review and meta-analysis. Front Oncol 12:998159. https://doi.org/10.3389/fonc.2022.998159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He M, Jiang Z, Wang C, Hao Z, An J, Shen J (2018) Diagnostic value of near-infrared or fluorescent indocyanine green guided sentinel lymph node mapping in gastric cancer: a systematic review and meta-analysis. J Surg Oncol 118(8):1243–1256. https://doi.org/10.1002/jso.25285

    Article  CAS  PubMed  Google Scholar 

  88. Huang L, Wei T, Chen J, Zhou D (2017) Feasibility and diagnostic performance of dual-tracer-guided sentinel lymph node biopsy in cT1-2N0M0 gastric cancer: a systematic review and meta-analysis of diagnostic studies. World J Surg Oncol 15(1):103. https://doi.org/10.1186/s12957-017-1159-7

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pang H-Y et al (2022) Assessment of indocyanine green fluorescence lymphography on lymphadenectomy during minimally invasive gastric cancer surgery: a systematic review and meta-analysis. Surg Endosc 36(3):1726–1738. https://doi.org/10.1007/s00464-021-08830-2

    Article  PubMed  Google Scholar 

  90. Skubleny D et al (2018) Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis. Surg Endosc 32(6):2620–2631. https://doi.org/10.1007/s00464-018-6100-9

    Article  PubMed  Google Scholar 

  91. Zhao J et al (2022) Efficacy and safety of indocyanine green tracer-guided lymph node dissection in minimally invasive radical gastrectomy for gastric cancer: a systematic review and meta-analysis. Front Oncol 12:884011. https://doi.org/10.3389/fonc.2022.884011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen H et al (2022) Application effect of icg fluorescence real-time imaging technology in laparoscopic hepatectomy. Front Oncol 12:819960. https://doi.org/10.3389/fonc.2022.819960

    Article  PubMed  PubMed Central  Google Scholar 

  93. Granieri S et al (2022) Preoperative Indocyanine Green (ICG) clearance test: can we really trust it to predict post hepatectomy liver failure? A systematic review of the literature and meta-analysis of diagnostic test accuracy. Photodiagnosis Photodyn Ther. https://doi.org/10.1016/j.pdpdt.2022.103170

    Article  PubMed  Google Scholar 

  94. Hu Y, Fu T, Zhang Z, Hua L, Zhao Q, Zhang W (2021) Does application of indocyanine green fluorescence imaging enhance clinical outcomes in liver resection? A meta-analysis. Photodiagnosis Photodyn Ther 36:102554. https://doi.org/10.1016/j.pdpdt.2021.102554

    Article  CAS  PubMed  Google Scholar 

  95. Liu Y, Wang Q, Du B, Wang XZ, Xue Q, Gao WF (2021) Meta-analysis of indocyanine green fluorescence imaging-guided laparoscopic hepatectomy. Photodiagnosis Photodyn Ther 35:102354. https://doi.org/10.1016/j.pdpdt.2021.102354

    Article  CAS  PubMed  Google Scholar 

  96. Purich K et al (2020) Intraoperative fluorescence imaging with indocyanine green in hepatic resection for malignancy: a systematic review and meta-analysis of diagnostic test accuracy studies. Surg Endosc 34(7):2891–2903. https://doi.org/10.1007/s00464-020-07543-2

    Article  PubMed  Google Scholar 

  97. Qi C et al (2019) Effectiveness and safety of indocyanine green fluorescence imaging-guided hepatectomy for liver tumors: a systematic review and first meta-analysis. Photodiagnosis Photodyn Ther 28:346–353. https://doi.org/10.1016/j.pdpdt.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  98. Rompianesi G et al (2022) Systematic review, meta-analysis and single-centre experience of the diagnostic accuracy of intraoperative near-infrared indocyanine green-fluorescence in detecting pancreatic tumours. HPB 24(11):1823–1831. https://doi.org/10.1016/j.hpb.2022.05.004

    Article  PubMed  Google Scholar 

  99. Wang H-Q, Yang J, Yang J-Y, Yan L-N (2013) Bile leakage test in liver resection: a systematic review and meta-analysis. World J Gastroenterol 19(45):8420–8426. https://doi.org/10.3748/wjg.v19.i45.8420

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Xu Y, Zhang Y, Tian H (2023) Safety and effectiveness of fluorescence laparoscopy in precise hepatectomy: a meta-analysis. Photodiagnosis Photodyn Ther 42:103599. https://doi.org/10.1016/j.pdpdt.2023.103599

    Article  CAS  PubMed  Google Scholar 

  101. Xu C, Cui X, Jia Z, Shen X, Che J (2023) A meta-analysis of short-term and long-term effects of indocyanine green fluorescence imaging in hepatectomy for liver cancer. Photodiagnosis Photodyn Ther 42:103497. https://doi.org/10.1016/j.pdpdt.2023.103497

    Article  CAS  PubMed  Google Scholar 

  102. Xue Q, Wu J, Lei Z, Wang Q, Gao W, Fu J (2022) Application value of fluorescence visualization-assisted technology in the resection of liver cancer: a systematic review and meta-analysis. Photodiagnosis Photodyn Ther 39:102940. https://doi.org/10.1016/j.pdpdt.2022.102940

    Article  CAS  PubMed  Google Scholar 

  103. Zhu G et al (2023) Application of indocyanine green-mediated fluorescence molecular imaging technology in liver tumors resection: a systematic review and meta-analysis. Front Oncol 13:1167536. https://doi.org/10.3389/fonc.2023.1167536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baeten IGT et al (2022) Indocyanine green versus technetium-99m with blue dye for sentinel lymph node detection in early-stage cervical cancer: a systematic review and meta-analysis. Cancer Rep Hoboken NJ 5(1):e1401. https://doi.org/10.1002/cnr2.1401

    Article  CAS  Google Scholar 

  105. Bodurtha Smith AJ, Fader AN, Tanner EJ (2017) Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis. Am J Obstet Gynecol 216(5):459–476. https://doi.org/10.1016/j.ajog.2016.11.1033

    Article  PubMed  Google Scholar 

  106. Burg LC et al (2022) The added value of SLN mapping with indocyanine green in low- and intermediate-risk endometrial cancer management: a systematic review and meta-analysis. J Gynecol Oncol 33(5):e66. https://doi.org/10.3802/jgo.2022.33.e66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chiyoda T et al (2022) Sentinel node navigation surgery in cervical cancer: a systematic review and metaanalysis. Int J Clin Oncol 27(8):1247–1255. https://doi.org/10.1007/s10147-022-02178-w

    Article  PubMed  Google Scholar 

  108. Crivellaro C et al (2018) Sentinel node biopsy in endometrial cancer: an update. Clin Transl Imaging 6(2):91–100. https://doi.org/10.1007/s40336-018-0268-9

    Article  Google Scholar 

  109. Di Donna MC et al (2023) Detection of sentinel lymph node in vulvar cancer using 99mTc-labeled colloid lymphoscintigraphy, blue dye, and indocyanine-green fluorescence: a meta-analysis of studies published in 2010–2020. Arch Gynecol Obstet 307(6):1677–1686. https://doi.org/10.1007/s00404-022-06605-1

    Article  CAS  PubMed  Google Scholar 

  110. Ji Q, Wang X, Jiang J, Chen L (2020) Sentinel lymph node mapping in high-risk endometrial cancer: a systematic review and meta-analysis. Gland Surg 9(6):2091–2105. https://doi.org/10.21037/gs-20-807

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lin H, Ding Z, Kota VG, Zhang X, Zhou J (2017) Sentinel lymph node mapping in endometrial cancer: a systematic review and meta-analysis. Oncotarget 8(28):46601–46610. https://doi.org/10.18632/oncotarget.16662

    Article  PubMed  PubMed Central  Google Scholar 

  112. Maheux-Lacroix S, Belanger M, Pinard L, Lemyre M, Laberge P, Boutin A (2020) Diagnostic accuracy of intraoperative tools for detecting endometriosis: a systematic review and meta-analysis. J Minim Invasive Gynecol 27(2):433–440. https://doi.org/10.1016/j.jmig.2019.11.010

    Article  PubMed  Google Scholar 

  113. Marchocki Z et al (2021) Sentinel lymph node biopsy in high-grade endometrial cancer: a systematic review and meta-analysis of performance characteristics. Am J Obstet Gynecol 225(4):367.e1-367.e39. https://doi.org/10.1016/j.ajog.2021.05.034

    Article  PubMed  Google Scholar 

  114. Nagar H, Wietek N, Goodall RJ, Hughes W, Schmidt-Hansen M, Morrison J (2021) Sentinel node biopsy for diagnosis of lymph node involvement in endometrial cancer. Cochrane Database Syst Rev 6(6):CD013021. https://doi.org/10.1002/14651858.CD013021.pub2

    Article  PubMed  Google Scholar 

  115. Ruscito I et al (2016) Sentinel node mapping in cervical and endometrial cancer: indocyanine green versus other conventional dyes-a meta-analysis. Ann Surg Oncol 23(11):3749–3756. https://doi.org/10.1245/s10434-016-5236-x

    Article  PubMed  Google Scholar 

  116. Ulain Q et al (2018) Indocyanine green can stand alone in detecting sentinel lymph nodes in cervical cancer. J Int Med Res 46(12):4885–4897. https://doi.org/10.1177/0300060518803041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang L, Liu S, Xu T, Yuan L, Yang X (2021) Sentinel lymph node mapping in early-stage cervical cancer: meta-analysis. Medicine (Baltimore) 100(34):e27035. https://doi.org/10.1097/MD.0000000000027035

    Article  CAS  PubMed  Google Scholar 

  118. Zhang X, Bao B, Wang S, Yi M, Jiang L, Fang X (2021) Sentinel lymph node biopsy in early stage cervical cancer: a meta-analysis. Cancer Med 10(8):2590–2600. https://doi.org/10.1002/cam4.3645

    Article  CAS  PubMed  Google Scholar 

  119. Wu Y, Jing J, Wang J, Xu B, Du M, Chen M (2019) Robotic-assisted sentinel lymph node mapping with indocyanine green in pelvic malignancies: a systematic review and meta-analysis. Front Oncol 9:585. https://doi.org/10.3389/fonc.2019.00585

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xiong L et al (2014) Indocyanine green fluorescence-guided sentinel node biopsy: a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 40(7):843–849. https://doi.org/10.1016/j.ejso.2014.02.228

    Article  CAS  Google Scholar 

  121. Aoun F, Albisinni S, Zanaty M, Hassan T, Janetschek G, van Velthoven R (2018) Indocyanine green fluorescence-guided sentinel lymph node identification in urologic cancers: a systematic review and meta-analysis. Miverva Urol E Nefrol Ital J Urol Nephrol 70(4):361–369. https://doi.org/10.23736/S0393-2249.17.02932-0

    Article  Google Scholar 

  122. Urabe F et al (2021) Performance of indocyanine green fluorescence for detecting lymph node metastasis in prostate cancer: a systematic review and meta-analysis. Clin Genitourin Cancer 19(5):466.e1-466.e9. https://doi.org/10.1016/j.clgc.2021.03.013

    Article  PubMed  Google Scholar 

  123. Veccia A et al (2020) Near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: pooled analysis of comparative studies. Eur Urol Focus 6(3):505–512. https://doi.org/10.1016/j.euf.2019.03.005

    Article  PubMed  Google Scholar 

  124. Zhang R, Zhang Y, Dong S, Pang K, Yang X, Wei X (2023) Performance of indocyanine green in sentinel lymph node mapping and lymph node metastasis in penile cancer: systematic review, meta-analysis, and single-center experience. World J Urol 41(9):2319–2326. https://doi.org/10.1007/s00345-023-04485-x

    Article  PubMed  Google Scholar 

  125. Ortega CB, Guerron AD, Yoo JS (2018) The use of fluorescence angiography during laparoscopic sleeve gastrectomy. JSLS 22(2):e2018.00005. https://doi.org/10.4293/JSLS.2018.00005

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mangano A et al (2022) Role of Indocyanine Green (ICG)-enhanced fluorescence in primary and revisional bariatric surgery: narrative overview of selected literature and intraoperative surgical videos. Surg Technol Int 40:79–84. https://doi.org/10.52198/22.STI.40.GS1517

    Article  PubMed  Google Scholar 

  127. Mongelli F et al (2022) Reoperative bariatric surgery after primary laparoscopic gastric plication for morbid obesity: a systematic review and meta-analysis. Langenbecks Arch Surg 407(5):1839–1850. https://doi.org/10.1007/s00423-022-02485-w

    Article  PubMed  Google Scholar 

  128. Gupta V, Jain G (2019) Safe laparoscopic cholecystectomy: adoption of universal culture of safety in cholecystectomy. World J Gastrointest Surg 11(2):62–84. https://doi.org/10.4240/wjgs.v11.i2.62

    Article  PubMed  PubMed Central  Google Scholar 

  129. You J et al (2022) Intrathoracic versus cervical anastomosis in esophagectomy for esophageal cancer: a meta-analysis of randomized controlled trials. Surgery 172(2):575–583. https://doi.org/10.1016/j.surg.2022.03.006

    Article  PubMed  Google Scholar 

  130. Verstegen MHP et al (2019) Management of intrathoracic and cervical anastomotic leakage after esophagectomy for esophageal cancer: a systematic review. World J Emerg Surg 14(1):17. https://doi.org/10.1186/s13017-019-0235-4

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wang Y, Zhu L, Xia W, Wang F (2018) Anatomy of lymphatic drainage of the esophagus and lymph node metastasis of thoracic esophageal cancer. Cancer Manag Res 10:6295. https://doi.org/10.2147/CMAR.S182436

    Article  PubMed  PubMed Central  Google Scholar 

  132. Prenzel KL et al (2010) Prognostic relevance of skip metastases in esophageal cancer. Ann Thorac Surg 90(5):1662–1667. https://doi.org/10.1016/j.athoracsur.2010.07.008

    Article  PubMed  Google Scholar 

  133. Ishizawa T et al (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115(11):2491–2504. https://doi.org/10.1002/cncr.24291

    Article  PubMed  Google Scholar 

  134. Ishizawa T, Zuker NB, Kokudo N, Gayet B (2012) Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg 147(4):393–394. https://doi.org/10.1001/archsurg.2012.59

    Article  PubMed  Google Scholar 

  135. Dip F et al (2022) Consensus conference statement on the general use of near-infrared fluorescence imaging and indocyanine green guided surgery: results of a modified Delphi study. Ann Surg 275(4):685. https://doi.org/10.1097/SLA.0000000000004412

    Article  PubMed  Google Scholar 

  136. Pollmann L, Juratli M, Roushansarai N, Pascher A, Hölzen JP (2023) Quantification of indocyanine green fluorescence imaging in general, visceral and transplant surgery. J Clin Med 12(10):3550. https://doi.org/10.3390/jcm12103550

    Article  PubMed  PubMed Central  Google Scholar 

  137. Spota A et al (2021) Fluorescence-based bowel anastomosis perfusion evaluation: results from the IHU-IRCAD-EAES EURO-FIGS registry. Surg Endosc 35(12):7142–7153. https://doi.org/10.1007/s00464-020-08234-8

    Article  PubMed  Google Scholar 

  138. Zhou S-N et al (2023) Feasibility of machine learning-based modeling and prediction using multiple centers data to assess intrahepatic cholangiocarcinoma outcomes. Ann Med 55(1):215–223. https://doi.org/10.1080/07853890.2022.2160008

    Article  PubMed  Google Scholar 

  139. Ishizawa T et al (2021) Assessing the development status of intraoperative fluorescence imaging for perfusion assessments, using the IDEAL framework. BMJ Surg Interv Health Technol 3(1):e000088. https://doi.org/10.1136/bmjsit-2021-000088

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shea BJ et al (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7(1):10. https://doi.org/10.1186/1471-2288-7-10

    Article  PubMed  PubMed Central  Google Scholar 

  141. Faggion CM (2015) Critical appraisal of AMSTAR: challenges, limitations, and potential solutions from the perspective of an assessor. BMC Med Res Methodol 15(1):63. https://doi.org/10.1186/s12874-015-0062-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Pantelis.

Ethics declarations

Disclosures

Athanasios G. Pantelis, Nikolaos Machairiotis, Sofoklis Stavros, Stewart Disu, and Petros Drakakis has no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1A. Distribution of the included studies by year of publication

Supplementary Figure 1B. Geographical distribution of the included studies

464_2023_10546_MOESM3_ESM.tif

Supplementary Figure 2. Distribution of the included systematic reviews (SR) and meta-analyses (MA) by scientific discipline / (sub)specialty

464_2023_10546_MOESM4_ESM.tif

Supplementary Figure 3. Distribution of the included meta-analyses by (sub)specialty and by overall quality score according to the AMSTAR 2 instrument

Supplementary file5 (DOCX 15 KB)

Supplementary file6 (XLSX 31 KB)

Supplementary file7 (XLSX 66 KB)

Supplementary file8 (XLSX 15 KB)

Supplementary file9 (XLSX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantelis, A.G., Machairiotis, N., Stavros, S. et al. Current applications of indocyanine green (ICG) in abdominal, gynecologic and urologic surgery: a meta-review and quality analysis with use of the AMSTAR 2 instrument. Surg Endosc 38, 511–528 (2024). https://doi.org/10.1007/s00464-023-10546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10546-4

Keywords

Navigation