Skip to main content

Advertisement

Log in

Computer-aided diagnosis in predicting the invasion depth of early colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy

  • Review Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Endoscopic resection (ER) is widely applied to treat early colorectal cancer (CRC). Predicting the invasion depth of early CRC is critical in determining treatment strategies. The use of computer-aided diagnosis (CAD) algorithms could theoretically make accurate and objective predictions regarding the suitability of lesions for ER indication based on invasion depth. This study aimed to assess diagnostic test accuracy of CAD algorithms in predicting the invasion depth of early CRC and to compare the performance between the CAD algorithms and endoscopists.

Methods

Multiple databases were searched until June 30, 2022 for studies that evaluated the diagnostic performance of CAD algorithms for invasion depth of CRC. Meta-analysis of diagnostic test accuracy using a bivariate mixed-effects model was performed.

Results

Ten studies consisting of 13 arms (13,918 images from 1472 lesions) were included. Due to significant heterogeneity, studies were stratified into Japan/Korea-based or China-based studies. For the former, the area under the curve (AUC), sensitivity, and specificity of the CAD algorithms were 0.89 (95% CI 0.86–0.91), 62% (95% CI 50–72%), and 96% (95% CI 93–98%), respectively. For the latter, AUC, sensitivity, and specificity were 0.94 (95% CI 0.92–0.96), 88% (95% CI 78–94%), and 88% (95% CI 80–93%), respectively. The performance of the CAD algorithms in Japan/Korea-based studies was not significantly different from that of all endoscopists (0.88 vs. 0.91, P = 0.10) but was inferior to that of expert endoscopists (0.88 vs. 0.92, P = 0.03). The performance of the CAD algorithms in China-based studies was better than that of all endoscopists (0.94 vs. 0.90, P = 0.01).

Conclusion

The CAD algorithms showed comparable accuracy for prediction of invasion depth of early CRC compared to all endoscopists, which was still lower than expert endoscopists in diagnostic accuracy; more improvements should be achieved before it can be extensively applied to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CAD:

Computer-aided diagnosis

CI:

Confidence interval

CRC:

Colorectal cancer

DOR:

Diagnostic odds ratio

FN:

False negative

FP:

False positive

IEE:

Image-enhanced endoscopy

JNET:

Japan NBI Expert Team

ME-NBI:

Magnifying endoscopy with narrow-band imaging

NBI:

Narrow-band imaging

NICE:

NBI international colorectal endoscopic

NLR:

Negative likelihood ratio

PLR:

Positive likelihood ratio

SM:

Submucosa

TN:

True negative

TP:

True positive

WLI:

White-light imaging

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691

    Article  PubMed  Google Scholar 

  3. Nishihara R, Wu K, Lochhead P, Morikawa T, Liao X, Qian ZR, Inamura K, Kim SA, Kuchiba A, Yamauchi M, Imamura Y, Willett WC, Rosner BA, Fuchs CS, Giovannucci E, Ogino S, Chan AT (2013) Long-term colorectal-cancer incidence and mortality after lower endoscopy. N Engl J Med 369:1095–1105

    Article  CAS  PubMed  Google Scholar 

  4. Kanth P, Inadomi JM (2021) Screening and prevention of colorectal cancer. BMJ 374:n1855

    Article  PubMed  Google Scholar 

  5. Levin TR, Corley DA, Jensen CD, Schottinger JE, Quinn VP, Zauber AG, Lee JK, Zhao WK, Udaltsova N, Ghai NR, Lee AT, Quesenberry CP, Fireman BH, Doubeni CA (2018) Effects of organized colorectal cancer screening on cancer incidence and mortality in a large community-based population. Gastroenterology 155:1383-1391.e1385

    Article  PubMed  Google Scholar 

  6. Kaltenbach T, Anderson JC, Burke CA, Dominitz JA, Gupta S, Lieberman D, Robertson DJ, Shaukat A, Syngal S, Rex DK (2020) Endoscopic removal of colorectal lesions-recommendations by the US multi-society task force on colorectal cancer. Gastrointest Endosc 91:486–519

    Article  PubMed  Google Scholar 

  7. Pimentel-Nunes P, Libânio D, Bastiaansen BAJ, Bhandari P, Bisschops R, Bourke MJ, Esposito G, Lemmers A, Maselli R, Messmann H, Pech O, Pioche M, Vieth M, Weusten B, van Hooft JE, Deprez PH, Dinis-Ribeiro M (2022) Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) guideline—update 2022. Endoscopy 54:591–622

    Article  PubMed  Google Scholar 

  8. Tanaka S, Kashida H, Saito Y, Yahagi N, Yamano H, Saito S, Hisabe T, Yao T, Watanabe M, Yoshida M, Saitoh Y, Tsuruta O, Sugihara KI, Igarashi M, Toyonaga T, Ajioka Y, Kusunoki M, Koike K, Fujimoto K, Tajiri H (2020) Japan gastroenterological endoscopy society guidelines for colorectal endoscopic submucosal dissection/endoscopic mucosal resection. Dig Endosc 32:219–239

    Article  PubMed  Google Scholar 

  9. Niimi K, Fujishiro M, Kodashima S, Goto O, Ono S, Hirano K, Minatsuki C, Yamamichi N, Koike K (2010) Long-term outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 42:723–729

    Article  CAS  PubMed  Google Scholar 

  10. Saito Y, Uraoka T, Yamaguchi Y, Hotta K, Sakamoto N, Ikematsu H, Fukuzawa M, Kobayashi N, Nasu J, Michida T, Yoshida S, Ikehara H, Otake Y, Nakajima T, Matsuda T, Saito D (2010) A prospective, multicenter study of 1111 colorectal endoscopic submucosal dissections (with video). Gastrointest Endosc 72:1217–1225

    Article  PubMed  Google Scholar 

  11. Ikehara H, Saito Y, Matsuda T, Uraoka T, Murakami Y (2010) Diagnosis of depth of invasion for early colorectal cancer using magnifying colonoscopy. J Gastroenterol Hepatol 25:905–912

    Article  PubMed  Google Scholar 

  12. Matsuda T, Fujii T, Saito Y, Nakajima T, Uraoka T, Kobayashi N, Ikehara H, Ikematsu H, Fu KI, Emura F, Ono A, Sano Y, Shimoda T, Fujimori T (2008) Efficacy of the invasive/non-invasive pattern by magnifying chromoendoscopy to estimate the depth of invasion of early colorectal neoplasms. Am J Gastroenterol 103:2700–2706

    Article  PubMed  Google Scholar 

  13. Hayashi N, Tanaka S, Hewett DG, Kaltenbach TR, Sano Y, Ponchon T, Saunders BP, Rex DK, Soetikno RM (2013) Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc 78:625–632

    Article  PubMed  Google Scholar 

  14. Sano Y, Hirata D, Saito Y (2018) Japan NBI expert team classification: narrow-band imaging magnifying endoscopic classification of colorectal tumors. Dig Endosc 30:543–545

    Article  PubMed  Google Scholar 

  15. Katagiri A, Fu KI, Sano Y, Ikematsu H, Horimatsu T, Kaneko K, Muto M, Yoshida S (2008) Narrow band imaging with magnifying colonoscopy as diagnostic tool for predicting histology of early colorectal neoplasia. Aliment Pharmacol Ther 27:1269–1274

    Article  CAS  PubMed  Google Scholar 

  16. Uraoka T, Saito Y, Ikematsu H, Yamamoto K, Sano Y (2011) Sano’s capillary pattern classification for narrow-band imaging of early colorectal lesions. Dig Endosc 23(Suppl 1):112–115

    Article  PubMed  Google Scholar 

  17. Singh R, Jayanna M, Navadgi S, Ruszkiewicz A, Saito Y, Uedo N (2013) Narrow-band imaging with dual focus magnification in differentiating colorectal neoplasia. Dig Endosc 25(Suppl 2):16–20

    Article  PubMed  Google Scholar 

  18. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L (2020) Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 158:76-94.e72

    Article  PubMed  Google Scholar 

  19. Taghiakbari M, Mori Y, von Renteln D (2021) Artificial intelligence-assisted colonoscopy: a review of current state of practice and research. World J Gastroenterol 27:8103–8122

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, Trikudanathan G, Trindade AJ, Watson RR, Maple JT, Lichtenstein DR (2020) Artificial intelligence in gastrointestinal endoscopy. VideoGIE 5:598–613

    Article  PubMed  PubMed Central  Google Scholar 

  21. Okagawa Y, Abe S, Yamada M, Oda I, Saito Y (2022) Artificial intelligence in endoscopy. Dig Dis Sci 67:1553–1572

    Article  PubMed  Google Scholar 

  22. Yu C, Helwig EJ (2022) The role of AI technology in prediction, diagnosis and treatment of colorectal cancer. Artif Intell Rev 55:323–343

    Article  PubMed  Google Scholar 

  23. Spadaccini M, Iannone A, Maselli R, Badalamenti M, Desai M, Chandrasekar VT, Patel HK, Fugazza A, Pellegatta G, Galtieri PA, Lollo G, Carrara S, Anderloni A, Rex DK, Savevski V, Wallace MB, Bhandari P, Roesch T, Gralnek IM, Sharma P, Hassan C, Repici A (2021) Computer-aided detection versus advanced imaging for detection of colorectal neoplasia: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 6:793–802

    Article  PubMed  Google Scholar 

  24. Lui TKL, Guo CG, Leung WK (2020) Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointest Endosc 92:11-22.e16

    Article  PubMed  Google Scholar 

  25. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396

    Article  PubMed  Google Scholar 

  26. Fagan TJ (1975) Letter: nomogram for Bayes theorem. N Engl J Med 293:257

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Fine JP, Safdar N (2007) Prevalence-dependent diagnostic accuracy measures. Stat Med 26:3258–3273

    Article  PubMed  Google Scholar 

  28. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219

    Article  PubMed  PubMed Central  Google Scholar 

  29. Devillé WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, Bezemer PD (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okamoto Y, Yoshida S, Izakura S, Katayama D, Michida R, Koide T, Tamaki T, Kamigaichi Y, Tamari H, Shimohara Y, Nishimura T, Inagaki K, Tanaka H, Yamashita K, Sumimoto K, Oka S, Tanaka S (2022) Development of multi-class computer-aided diagnostic systems using the NICE/JNET classifications for colorectal lesions. J Gastroenterol Hepatol 37:104–110

    Article  PubMed  Google Scholar 

  32. Tokunaga M, Matsumura T, Nankinzan R, Suzuki T, Oura H, Kaneko T, Fujie M, Hirai S, Saiki R, Akizue N, Okimoto K, Arai M, Kato J, Kato N (2021) Computer-aided diagnosis system using only white-light endoscopy for the prediction of invasion depth in colorectal cancer. Gastrointest Endosc 93:647–653

    Article  PubMed  Google Scholar 

  33. Luo X, Wang J, Han Z, Yu Y, Chen Z, Huang F, Xu Y, Cai J, Zhang Q, Qiao W, Ng IC, Tan RT, Liu S, Yu H (2021) Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest Endosc 94:627-638.e621

    Article  PubMed  Google Scholar 

  34. Lu Z, Xu Y, Yao L, Zhou W, Gong W, Yang G, Guo M, Zhang B, Huang X, He C, Zhou R, Deng Y, Yu H (2022) Real-time automated diagnosis of colorectal cancer invasion depth using a deep learning model with multimodal data (with video). Gastrointest Endosc 95:1186-1194.e1183

    Article  PubMed  Google Scholar 

  35. Zorron Cheng Tao PuL, Maicas G, Tian Y, Yamamura T, Nakamura M, Suzuki H, Singh G, Rana K, Hirooka Y, Burt AD, Fujishiro M, Carneiro G, Singh R (2020) Computer-aided diagnosis for characterization of colorectal lesions: comprehensive software that includes differentiation of serrated lesions. Gastrointest Endosc 92:891–899

    Article  Google Scholar 

  36. Song EM, Park B, Ha CA, Hwang SW, Park SH, Yang DH, Ye BD, Myung SJ, Yang SK, Kim N, Byeon JS (2020) Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci Rep 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakajima Y, Zhu X, Nemoto D, Li Q, Guo Z, Katsuki S, Hayashi Y, Utano K, Aizawa M, Takezawa T, Sagara Y, Shibukawa G, Yamamoto H, Lefor AK, Togashi K (2020) Diagnostic performance of artificial intelligence to identify deeply invasive colorectal cancer on non-magnified plain endoscopic images. Endosc Int Open 8:E1341-e1348

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lui TKL, Wong KKY, Mak LLY, Ko MKL, Tsao SKK, Leung WK (2019) Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence. Endosc Int Open 7:E514-e520

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ito N, Kawahira H, Nakashima H, Uesato M, Miyauchi H, Matsubara H (2019) Endoscopic diagnostic support system for cT1b colorectal cancer using deep learning. Oncology 96:44–50

    Article  PubMed  Google Scholar 

  40. Tamai N, Saito Y, Sakamoto T, Nakajima T, Matsuda T, Sumiyama K, Tajiri H, Koyama R, Kido S (2017) Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study. Endosc Int Open 5:E690-e694

    Article  PubMed  PubMed Central  Google Scholar 

  41. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778

  42. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2261–2269

  43. Qiu H, Ding S, Liu J, Wang L, Wang X (2022) Applications of artificial intelligence in screening, diagnosis, treatment, and prognosis of colorectal cancer. Curr Oncol 29:1773–1795

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tavanapong W, Oh J, Riegler MA, Khaleel M, Mittal B, de Groen PC (2022) Artificial intelligence for colonoscopy: past, present, and future. IEEE J Biomed Health Inform 26:3950–3965

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arribas J, Antonelli G, Frazzoni L, Fuccio L, Ebigbo A, van der Sommen F, Ghatwary N, Palm C, Coimbra M, Renna F, Bergman JJGHM, Sharma P, Messmann H, Hassan C, Dinis-Ribeiro MJ (2021) Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis. Gut 70:1458–1468

    Article  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Development Program of Shaanxi Province (Program No.2023-ZDLSF-36).

Author information

Authors and Affiliations

Authors

Contributions

JB and KL participated in the conception and design, manuscript preparation, statistical analysis of data, and interpretation of results; LG and JB participated in the study search and review; XZ and SZ participated in the data collection and quality assessment; ZL and YH participated in the manuscript revision and study supervision.

Corresponding authors

Correspondence to Ying Han or Zhiguo Liu.

Ethics declarations

Disclosures

Jiawei Bai, Kai Liu, Li Gao, Xin Zhao, Shaohua Zhu, Ying Han, and Zhiguo Liu have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1083 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Liu, K., Gao, L. et al. Computer-aided diagnosis in predicting the invasion depth of early colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy. Surg Endosc 37, 6627–6639 (2023). https://doi.org/10.1007/s00464-023-10223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10223-6

Keywords

Navigation