Skip to main content

Advertisement

Log in

Safety and efficacy of robotic-assisted versus laparoscopic distal gastrectomy after neoadjuvant chemotherapy for advanced gastric cancer

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Robot-assisted distal gastrectomy (RADG) has been used in the minimally invasive surgical treatment of gastric cancer, but the research on advanced gastric cancer (AGC) after neoadjuvant chemotherapy (NAC) has not been reported. This study aimed to analyze the outcomes of RADG versus laparoscopic distal gastrectomy (LDG) after NAC for AGC.

Methods

This was a retrospective propensity score-matched analysis from February 2020 and March 2022. Patients who underwent RADG or LDG for AGC (cT3-4a/N +) following NAC were enrolled and a propensity score-matched analysis was performed in a 1:1 manner. The patients were divided into RADG group and LDG group. The clinicopathological characteristics and short-term outcomes were observed.

Results

After propensity score matching, 67 patients each in the RADG and LDG groups. RADG was associated with a lower intraoperative blood loss (35.6 vs. 118.8 ml, P = 0.014) and more retrieved lymph nodes (LNs) (50.7 vs. 39.5, P < 0.001), more extraperigastric (18.3 vs. 10.4, P < 0.001), and suprapancreatic LNs (16.33 vs. 13.70, P = 0.042). The RADG group showed lower VAS scores at postoperative 24 h (2.2 vs 3.3, P = 0.034), earlier ambulation (1.3 vs. 2.6, P = 0.011), aerofluxus time (2.2 vs. 3.6, P = 0.025), and shorter postoperative hospital stay (8.3 vs. 9.8, P = 0.004). There were no significant differences in the operative time (216.7 vs.194.7 min, P = 0.204) and postoperative complications between the two groups.

Conclusion

RADG may be a potential therapeutic option for patients with AGC after NAC considering its advantages in perioperative period compared with LDG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Torre SRL, LA, Jemal A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Karimi P, Islami F, Anandasabapathy S et al (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomark Prev 23:700–713

    Article  Google Scholar 

  3. Venerito M, Link A, Rokkas T, Malfertheiner P (2016) Gastric cancer - clinical and epidemiological aspects. Helicobacter Suppl 1:39–44

    Article  Google Scholar 

  4. Cunningham D, Allum WH, Stenning SP et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355:11–20

    Article  CAS  PubMed  Google Scholar 

  5. Al-Batran SE, Homann N, Pauligk C et al (2019) Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393:1948–1957

    Article  PubMed  Google Scholar 

  6. Stahl M, Walz MK, Riera-Knorrenschild J et al (2017) Preoperative chemotherapy versus chemoradiotherapy in locally advanced adenocarcinomas of the oesophagogastric junction (POET): Long-term results of a controlled randomised trial. Eur J Cancer 81:183–190

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro J, van Lanschot JJB, Hulshof MCCM et al (2015) Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol 16:1090–1098

    Article  PubMed  Google Scholar 

  8. Kitagawa Y, Kitano S, Kubota T et al (2005) Minimally invasive surgery for gastric cancer–toward a confluence of two major streams: a review. Gastric Cancer 8:103–110

    Article  PubMed  Google Scholar 

  9. Koeda K, Nishizuka S, Wakabayashi G (2011) Minimally invasive surgery for gastric cancer: the future standard of care. World J Surg 35(7):1469–1477

    Article  PubMed  Google Scholar 

  10. Son SY, Kim HH (2014) Minimally invasive surgery in gastric cancer. World J Gastroenterol 20:14132–14141

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nunobe S, Kumagai K, Ida S et al (2016) Minimally invasive surgery for stomach cancer. Jpn J Clin Oncol 46:395–398

    Article  PubMed  Google Scholar 

  12. Son T, Hyung WJ (2015) Robotic gastrectomy for gastric cancer. J Surg Oncol 112:271–278

    Article  PubMed  Google Scholar 

  13. Terashima M, Tokunaga M, Tanizawa Y et al (2015) Robotic surgery for gastric cancer. Gastric Cancer 18:449–457

    Article  PubMed  Google Scholar 

  14. Solaini L, Avanzolini A, Pacilio CA et al (2020) Robotic surgery for gastric cancer in the west: a systematic review and meta-analyses of short-and long-term outcomes. Int J Surg 83:170–175

    Article  PubMed  Google Scholar 

  15. Guerrini GP, Esposito G, Magistri P et al (2020) (2020) Robotic versus laparoscopic gastrectomy for gastric cancer: The largest meta-analysis. Int J Surg 82:210–228

    Article  PubMed  Google Scholar 

  16. van Boxel GI, Ruurda JP, van Hillegersberg R (2019) Robotic-assisted gastrectomy for gastric cancer: a European perspective. Gastric Cancer 22:909–919

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu J, Zheng CH, Xu BB et al (2021) Assessment of robotic versus laparoscopic distal gastrectomy for gastric cancer: a randomized controlled trial. Ann Surg 273:858–867

    Article  PubMed  Google Scholar 

  18. Khaled I, Priego P, Soliman H et al (2021) Oncological outcomes of laparoscopic versus open gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: a retrospective multicenter study. World J Surg Oncol 19:206

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Z, Shan F, Wang Y et al (2016) Laparoscopic versus open distal gastrectomy for locally advanced gastric cancer after neoadjuvant chemotherapy: safety and short-term oncologic results. Surg Endosc 30:4265–4271

    Article  PubMed  Google Scholar 

  20. Li Z, Shan F, Ying X et al (2019) Assessment of laparoscopic distal gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: a randomized clinical trial. JAMA Surg 154:1093–1101

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fujisaki M, Mitsumori N, Shinohara T et al (2021) Short- and long-term outcomes of laparoscopic versus open gastrectomy for locally advanced gastric cancer following neoadjuvant chemotherapy. Surg Endosc 35:1682–1690

    Article  PubMed  Google Scholar 

  22. Zhang S, Yan D, Sun Q et al (2020) FLOT neoadjuvant chemotherapy followed by laparoscopic D2 gastrectomy in the treatment of locally resectable advanced gastric cancer. Can J Gastroenterol Hepatol 2020:1702823

    Article  PubMed  PubMed Central  Google Scholar 

  23. Japanese Gastric Cancer Association (2021) Japanese gastric cancer treatment guidelines 2018. Gastric Cancer 24:1–21

    Article  Google Scholar 

  24. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  25. Amin MB et al (eds.) (2017) AJCC Cancer Staging Manual. Springer: XII-1032.

  26. National Comprehensive Cancer Network (2019) Gastric Cancer. Version 2019. Accessed March 14, 2019. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf

  27. Faiz KW (2014) VAS–visuell analog skala [VAS–visual analog scale]. Tidsskr Nor Laegeforen 134:323

    Article  PubMed  Google Scholar 

  28. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Liang H, Li Z et al (2021) Perioperative or postoperative adjuvant oxaliplatin with S-1 versus adjuvant oxaliplatin with capecitabine in patients with locally advanced gastric or gastro-oesophageal junction adenocarcinoma undergoing D2 gastrectomy (RESOLVE): an open-label, superiority and non-inferiority, phase 3 randomised controlled trial. Lancet Oncol 22:1081–1092

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Q, Lian C, Huo Z et al (2020) The efficacy and safety of neoadjuvant chemotherapy on patients with advanced gastric cancer: a multicenter randomized clinical trial. Cancer Med 9:5731–5745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shitara K, Takashima A, Fujitani K et al (2017) Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol 2:277–287

    Article  PubMed  Google Scholar 

  32. Xu X, Wang L, Xu HQ et al (2013) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14:2591–2594

    Article  PubMed  Google Scholar 

  33. Ocaña Jiménez J, Priego P, Cuadrado M et al (2020) Impact of interval timing to surgery on tumor response after neoadjuvant treatment for gastric cancer. Rev Esp Enferm Dig 112:598–604

    Article  PubMed  Google Scholar 

  34. an der Werf LR, Dikken JL, van der Willik EM, et al (2018) Time interval between neoadjuvant chemoradiotherapy and surgery for oesophageal or junctional cancer: a nationwide study. Eur J Cancer 91:76–85

    Article  Google Scholar 

  35. Liu Y, Zhang KC, Huang XH et al (2018) Timing of surgery after neoadjuvant chemotherapy for gastric cancer: Impact on outcomes. World J Gastroenterol 14(24):257–265

    Article  Google Scholar 

  36. Bausys A, Ümarik T, Luksta M et al (2021) Impact of the interval between neoadjuvant chemotherapy and gastrectomy on short- and long-term outcomes for patients with advanced gastric cancer. Ann Surg Oncol 28:4444–4455

    Article  PubMed  Google Scholar 

  37. Hashizume M, Shimada M, Tomikawa M et al (2002) Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16:1187–1191

    Article  CAS  PubMed  Google Scholar 

  38. Choi S, Song JH, Lee S et al (2021) Surgical merits of open, laparoscopic, and robotic gastrectomy techniques with D2 lymphadenectomy in obese patients with gastric cancer. Ann Surg Oncol 28:7051–7060

    Article  PubMed  Google Scholar 

  39. Bobo Z, Xin W, Jiang L et al (2019) Robotic gastrectomy versus laparoscopic gastrectomy for gastric cancer: meta-analysis and trial sequential analysis of prospective observational studies. Surg Endosc 33:1033–1048

    Article  PubMed  Google Scholar 

  40. Smith DD, Schwarz RR, Schwarz RE (2005) Impact of total lymph node count on staging and survival after gastrectomy for gastric cancer: data from a large USpopulation database. J Clin Oncol 23:7114e24

    Article  Google Scholar 

  41. Son T, Hyung WJ, Lee JH et al (2012) Clinical implication of an insufficient number of examined lymph nodes after curative resection for gastric cancer. Cancer 118:4687e93

    Article  Google Scholar 

  42. Li ZY, Zhou YB, Li TY et al (2021) Robotic, laparoscopic surgery committee of Chinese research hospital association Robotic gastrectomy versus laparoscopic gastrectomy for gastric cancer: a multicenter cohort study of 5402 patients in China. Annal Surg 277(1):e87–e95

    Article  Google Scholar 

  43. Shin HJ, Son SY et al (2021) Long-term comparison of robotic and laparoscopic gastrectomy for gastric cancer: a propensity scoreweighted analysis of 2084 consecutive patients. Ann Surg 1:128–137

    Article  Google Scholar 

  44. Son T, Lee JH, Kim YM et al (2014) Robotic spleen-preserving total gastrectomy for gastric cancer: comparison with conventional laparoscopic procedure. Surg Endosc 28:2606–2615

    Article  PubMed  Google Scholar 

  45. Muaddi H, Hafid ME, Choi WJ et al (2021) Clinical outcomes of robotic surgery compared to conventional surgical approaches (Laparoscopic or Open): a systematic overview of reviews. Annal Surg 273:467–473

    Article  Google Scholar 

  46. Li Z, Qian F, Zhao Y et al (2022) A comparative study on perioperative outcomes between robotic versus laparoscopic D2 total gastrectomy. Int J Surg 102:106636

    Article  PubMed  Google Scholar 

  47. Kim HI, Han SU, Yang HK et al (2016) Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg 263:103–109

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the Cultivating Outstanding Talents Project of Hebei Provincial Government Fund (Grant No. 2019012); Hebei public health committee county-level public hospitals suitable health technology promotion and storage project (Grant No. 2019024); Hebei Medical University Education and Teaching Research Project (Grant No. 2020CGPY-12, Grant No. 2020CHYB-23); and Hebei University Science and Technology Research Project (Grant No. ZD2019139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhao.

Ethics declarations

Disclosures

Yuan Tian, Honghai Guo, Yiyang Hu, Peigang Yang, Yang Liu, Ze Zhang, Pingan Ding, Tao Zheng, Liqiao Fan, Zhidong Zhang, Yong Li, and Qun Zhao have no conflicts of interest or financial ties to disclose.

Ethical approval

The present study was approved by the Ethical Review Committee of Hebei Medical University (Shijiazhuang, China, No.2022042). All procedures have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent or substitute for it was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Guo, H., Hu, Y. et al. Safety and efficacy of robotic-assisted versus laparoscopic distal gastrectomy after neoadjuvant chemotherapy for advanced gastric cancer. Surg Endosc 37, 6761–6770 (2023). https://doi.org/10.1007/s00464-023-10122-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10122-w

Keywords

Navigation