Skip to main content
Log in

Surgical methods influence on the risk of anastomotic fistula after pancreaticoduodenectomy: a systematic review and network meta-analysis

  • Review Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Pancreaticoduodenectomy is the first choice surgical intervention for the radical treatment of pancreatic tumors. However, an anastomotic fistula is a common complication after pancreaticoduodenectomy with a high mortality rate. With the development of minimally invasive surgery, open pancreaticoduodenectomy (OPD), laparoscopic pancreaticoduodenectomy (LPD), and robotic pancreaticoduodenectomy (RPD) are gaining interest. But the impact of these surgical methods on the risk of anastomosis has not been confirmed. Therefore, we aimed to integrate relevant clinical studies and explore the effects of these three surgical methods on the occurrence of anastomotic fistula after pancreaticoduodenectomy.

Methods

A systematic literature search was conducted for studies reporting the RPD, LPD, and OPD. Network meta-analysis of postoperative anastomotic fistula (Pancreatic fistula, biliary leakage, gastrointestinal fistula) was performed.

Results

Sixty-five studies including 10,026 patients were included in the network meta-analysis. The rank of risk probability of pancreatic fistula for RPD (0.00) was better than LPD (0.37) and OPD (0.62). Thus, the analysis suggests the rank of risk of the postoperative pancreatic fistula for RPD, LPD, and OPD. The rank of risk probability for biliary leakage was similar for RPD (0.15) and LPD (0.15), and both were better than OPD (0.68).

Conclusions

This network meta-analysis provided ranking for three different types of pancreaticoduodenectomy. The RPD and LPD can effectively improve the quality of surgery and are safe as well as feasible for OPD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong DF (2019) My opinion on the selection of laparotomy, laparoscopy and Daphenge robotic pancreaticoduodenectomy. J Hepatobiliary Surg 27(4):314–316

    Google Scholar 

  2. Yoshioka R, Yasunaga H, Hasegawa K et al (2014) Impact of hospital volume on hospital mortality, length of stay and total costs after pancreaticoduodenectomy. Br J Surg 101(5):523–529

    Article  CAS  PubMed  Google Scholar 

  3. Carroll JE, Smith JK, Simons JP et al (2010) Redefining mortality after pancreatic cancer resection. J Gastrointest Surg 14(11):1708–1708

    Article  Google Scholar 

  4. Jiang J, Upfill-Brown A, Dann AM et al (2019) Association of hospital length of stay and complications with readmission after open pancreaticoduodenectomy. JAMA Surg 154(1):88–90

    Article  PubMed  Google Scholar 

  5. Yuan F, Essaji Y, Belley-Cote EP et al (2018) Postoperative complications in elderly patients following pancreaticoduodenectomy lead to increased postoperative mortality and costs. A retrospective cohort study. Int J Surg 60:204–209

    Article  PubMed  Google Scholar 

  6. Jester AL, Chung CW, Becerra DC et al (2017) The impact of hepaticojejunostomy leaks after pancreatoduodenectomy: a devastating source of morbidity and mortality. J Gastrointest Surg 21(6):1017–1024

    Article  PubMed  Google Scholar 

  7. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies inmeta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  8. Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    Article  CAS  PubMed  Google Scholar 

  9. Zeng XT, Zhang C, Du L (2013) ADDIS software for mesh meta-analysis. Chin J Evid-Based Med 13(12):1508–1515

    Google Scholar 

  10. Gumbs AA, Grès P, Madureira FA et al (2008) Laparoscopic vs. open resection of noninvasive intraductal pancreatic mucinous neoplasms. J Gastrointest Surg 12(4):707–712

    Article  PubMed  Google Scholar 

  11. Cho A, Yamamoto H, Nagata M et al (2009) Comparison of laparoscopy-assisted and open pylorus-preserving pancreaticoduodenectomy for periampullary disease. Am J Surg 198:445–449

    Article  PubMed  Google Scholar 

  12. Zhou NX, Chen JZ, Liu QD et al (2011) Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery. Int J Med Robot & Comput Assist Surg 7:131–137

    Article  Google Scholar 

  13. Buchs NC, Addeo P, Bianco FM et al (2011) Robotic versus open pancreaticoduodenectomy: a comparative study at a single institution. World J Surg 35(12):2739–2746

    Article  PubMed  Google Scholar 

  14. Lai ECH, Yang GPC, Tang CN et al (2012) Robot-assisted laparoscopic pancreaticoduodenectomy versus open pancreaticoduodenectomy–a comparative study. Int J Surg 10(9):475–479

    Article  PubMed  Google Scholar 

  15. Asbun HJ, Stauffer JA (2012) Laparoscopic vs open pancreaticoduodenectomy: overall outcomes and severity of complications using the accordion severity grading system. J Am Coll Surg 215(6):810–819

    Article  PubMed  Google Scholar 

  16. Chalikonda S, Aguilar-Saavedra JR, Walsh RM (2012) Laparoscopic robotic-assisted pancreaticoduodenectomy: a case-matched comparison with open resection. Surg Endosc 26(9):2397–2402

    Article  CAS  PubMed  Google Scholar 

  17. Mesleh MG, Stauffer JA, Bowers SP et al (2013) Cost analysis of open and laparoscopic pancreaticoduodenectomy: a single institution comparison. Surg Endosc 27(12):4518–4523

    Article  PubMed  Google Scholar 

  18. Bao PQ, Mazirka PO, Watkins KT (2014) Retrospective comparison of robot-assisted minimally invasive versus open pancreaticoduodenectomy for periampullary neoplasms. J Gastrointest Surg 18:682–689

    Article  PubMed  Google Scholar 

  19. Croome KP, Farnell MB, Que FG et al (2014) Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg 260(4):633–638

    Article  PubMed  Google Scholar 

  20. Abdul RH, Caroline SV, Alison C et al (2014) A matched-pair analysis of laparoscopic versus open pancreaticoduodenectomy: oncological outcomes using leeds pathology protocol. Hepatobiliary Pancreat Dis Int 13(04):435–441

    Article  Google Scholar 

  21. Paul JS, Daniel PN, Rebekah RW et al (2014) Defining the learning curve for team-based laparoscopic pancreaticoduodenectomy. Ann Surg Oncol 21(12):4014–4019

    Article  Google Scholar 

  22. Chen S, Chen JZ, Zhan Q et al (2015) Robot-assisted laparoscopic versus open pancreaticoduodenectomy: a prospective, matched, mid-term follow-up study. Surg Endosc 29(12):3698–3711

    Article  PubMed  Google Scholar 

  23. Dokmak S, Fadhel SF, Béatrice A et al (2015) Laparoscopic pancreaticoduodenectomy should not be routine for resection of periampullary tumors. J Am Coll Surg 12(8):831–838

    Article  Google Scholar 

  24. Song KB, Kim SC, Hwang DW et al (2015) Matched case-control analysis comparing laparoscopic and open pylorus-preserving pancreaticoduodenectomy in patients with periampullary tumors. Ann Surg 262(1):146–155

    Article  PubMed  Google Scholar 

  25. Baker EH, Ross SW, Seshadri R et al (2016) Robotic pancreaticoduodenectomy: comparison of complications and cost to the open approach. Int J Med Robot Comput Assist Surg : MRCAS 12(3):554–600

    Article  CAS  Google Scholar 

  26. Mcmillan MT, Zureikat AH, Hogg ME et al (2017) A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surg 152(4):327

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu R, Zhang T, Zhao ZM et al (2017) The surgical outcomes of robot-assisted laparoscopic pancreaticoduodenectomy versus laparoscopic pancreaticoduodenectomy for periampullary neoplasms: a comparative study of a single center. Surg Endosc 31(6):2380–2386

    Article  PubMed  Google Scholar 

  28. Delitto D, Luckhurst CM, Black BS et al (2016) Oncologic and perioperative outcomes following selective application of laparoscopic pancreaticoduodenectomy for periampullary malignancies. J Gastrointest Surg Off J Soc Surg Aliment Tract 20(7):1343–1349

    Article  Google Scholar 

  29. Boggi U, Napoli N, Costa F et al (2016) Robotic-assisted pancreatic resections. World J Surg 40(10):2497–2506

    Article  PubMed  Google Scholar 

  30. Stauffer JA, Coppola A, Villacreses D et al (2016) Laparoscopic versus open pancreaticoduodenectomy for pancreatic adenocarcinoma: long-term results at a single institution. Surg Endosc 31(5):1–9

    Google Scholar 

  31. Palanivelu C, Senthilnathan P, Sabnis SC et al (2017) Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 104:1443–1450

    Article  CAS  PubMed  Google Scholar 

  32. Li FK, Wang XM, Sun WD et al (2017) Comparison of recent clinical efficacy between laparoscopic and open pancreaticoduodenectomy. J Wannan Med Coll 36(6):4

    Google Scholar 

  33. Ignasi P, Burdío F, Morató O et al (2018) Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the padulap randomized controlled trial. Ann Surg 268(5):731–739

    Article  Google Scholar 

  34. Kim HS, Han Y, Kang JS et al (2018) Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy. J Hepatobiliary Pancreat Sci 25(2):142–149

    Article  PubMed  Google Scholar 

  35. Napoli N, Kauffmann EF, Menonna F et al (2018) Robotic versus open pancreatoduodenectomy: a propensity score-matched analysis based on factors predictive of postoperative pancreatic fistula. Surg Endosc 33(1):234–242

    PubMed  Google Scholar 

  36. Varley PR, Zenati MS, Klobuka A et al (2019) Does robotic pancreaticoduodenectomy improve outcomes in patients with high risk morphometric features compared to the open approach. HPB 21(6):695–701

    Article  PubMed  Google Scholar 

  37. Popov AY, Baryshev AG, Lishchenko AN et al (2018) Early outcomes of open, laparoscopic and robot-assisted pancreatoduodenectomy. Khirurgiia (Mosk) 9(1):24–30

    Google Scholar 

  38. Zhang YH, Hong DF, Zhang CW et al (2018) Total laparoscopic versus robot-assisted laparoscopic pancreaticoduodenectomy. Biosci Trends 12(5):484–490

    Article  PubMed  Google Scholar 

  39. Wang SE, Bor-Uei S, Chen SC et al (2018) Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: a propensity score-matched study. Surgery 164(6):1–6

    Article  Google Scholar 

  40. Hilst JV, Rooij TD, Bosscha K et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 23(1):199–207

    Article  Google Scholar 

  41. Kauffmann EF, Napoli N, Menonna F et al (2019) A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surg Endosc 33(1):234–242

    Article  PubMed  Google Scholar 

  42. Ielpo B, Caruso R, Duran H et al (2019) Robotic versus standard open pancreatectomy: a propensity score-matched analysis comparison. Updates Surg 71:137–144

    Article  PubMed  Google Scholar 

  43. Bencini L, Tofani F, Paolini C et al (2020) Single-centre comparison of robotic and open pancreatoduodenectomy: a propensity score-matched study. Surg Endosc 34(12):5402–5412

    Article  PubMed  Google Scholar 

  44. Cheng FH, Wu HR, Jang B et al (2019) Comparison of laparoscopic and open pancreaticoduodenectomy in the treatment of adenocarcinoma of duodenal papilla. Chin J Gen Surg 9:1068–1074

    Google Scholar 

  45. Marco VM, Mauro P, Marcos GR et al (2019) Robotic-assisted versus open pancreaticoduodenectomy: the results of a case-matched comparison. J Robot Surg 14(4):493–502

    Google Scholar 

  46. Sang HH, Chang MK, Hwang HK et al (2020) The Yonsei experience of 104 laparoscopic pancreaticoduodenectomies: a propensity score-matched analysis with open pancreaticoduodenectomy. Surg Endosc 34(4):1658–1664

    Article  Google Scholar 

  47. Kim H, Song KB, Wang DW et al (2019) Laparoscopic versus open pancreaticoduodenectomy for pancreatic neuroendocrine tumors: a single-center experience. Surg Endosc 12(7):4177–4185

    Article  CAS  Google Scholar 

  48. Jin JB, Qin K, Yang Y et al (2019) Robotic pancreatectomy for solid pseudopapillary tumors in the pancreatic head: a propensity score-matched comparison and analysis from a single center. Asian J Surg 43(1):354–361

    Article  PubMed  Google Scholar 

  49. Cai JP, Ramanathan R, Zenati MS et al (2019) Robotic pancreaticoduodenectomy is associated with decreased clinically relevant pancreatic fistulas: a propensity-matched analysis. J Gastrointest Surg 24(5):1111–1118

    Article  PubMed  Google Scholar 

  50. Kwon J, Song KB, Park SY et al (2020) Comparison of minimally invasive versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a propensity score matching analysis. Cancers 12(4):982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun XQ, Wang LC, Xia QQ et al (2020) Laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy: a comparison of short-term results. Chin J Gen Surg 35(9):4

    Google Scholar 

  52. Li GY, Peng Y, He ZX et al (2020) Comparison of clinical efficacy between laparoscopic and open pancreaticoduodenectomy. J Hepatobiliary Pancreat Surg 32(6):5

    CAS  Google Scholar 

  53. Hu JQ (2020) Effect analysis of laparoscopic and laparotomy in pancreaticoduodenectomy. Chin J Pancreat Dis 28(2):147–149

    Google Scholar 

  54. Zhang C, An L, Wang Y et al (2020) Clinical analysis of simultaneous laparoscopic and open pancreaticoduodenectomy. J Hepatobiliary Surg 28(2):104–110

    Google Scholar 

  55. Cui WP, Zhu HY, Dong Y et al (2020) Comparison of near-term efficacy of complete laparoscopic and open pancreaticoduodenectomy for periampullary tumors. Cancer Res Clin 32(3):166–169

    Google Scholar 

  56. Zhang ZX (2020) Clinical analysis of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy. Dissertation, Jilin University

  57. Chen BB (2020) Analysis of the short-term efficacy of laparoscopic and open pancreaticoduodenectomy. Dissertation, Bengbu Medical College

  58. Li W (2020) Perioperative safety and efficacy of laparoscopic and open pancreaticoduodenectomy for lower common bile duct carcinoma. Dissertation, Hunan Normal University

  59. Wu JX (2020) Retrospective analysis of clinical efficacy of complete laparoscopic and open pancreaticoduodenectomy. Dissertation, Nanchang University

  60. Chen P (2020) Comparison of safety and efficacy between minimally invasive and open pancreaticoduodenectomy. Dissertation, Qingdao University

  61. Zou H, Zhou JJ, Liu ZT et al (2020) Learning curve of robot-assisted pancreaticoduodenectomy and comparison with open surgery. J Robot Surg 1(3):155–165

    Google Scholar 

  62. Tu GP, Sun JC, Nie WP et al (2020) Comparison of efficacy and safety between robot-assisted and laparoscopic pancreaticoduodenectomy in the treatment of pancreatic cancer. Chin J Gen Surg 29(3):268–275

    Google Scholar 

  63. Zhu HY, Cui WP, Zhang XN et al (2020) Comparative analysis of the short-term efficacy of robotic and open pancreaticoduodenectomy for periampullary carcinoma. J Laparosc Surg 25(1):59–64

    Google Scholar 

  64. Baimas-George M, Watson M, Murphy KJ et al (2020) Robotic pancreaticoduodenectomy may offer improved oncologic outcomes over open surgery: a propensity-matched single-institution study. Surg Endosc 34(8):3644–3649

    Article  PubMed  Google Scholar 

  65. Gall TM, Pencavel TD, Cunningham D et al (2020) Transition from open and laparoscopic to robotic pancreaticoduodenectomy in a UK tertiary referral hepatobiliary and pancreatic centre–early experience of robotic pancreaticoduodenectosmy–sciencedirect. HPB 22(11):1637–1644

    Article  PubMed  Google Scholar 

  66. Shi YS, Jin JB, Qiu WH et al (2020) Short-term outcomes after robot-assisted vs open pancreaticoduodenectomy after the learning curve. JAMA Surg 155(5):389–394

    Article  PubMed  Google Scholar 

  67. Yoo D, Song KB, Lee JW et al (2020) A comparative study of laparoscopic versus open pancreaticoduodenectomy for ampulla of vater carcinoma. J Clin Med 9(7):2214

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dang C, Wang M, Zhu F et al (2021) Comparison of laparoscopic and open pancreaticoduodenectomy for the treatment of nonpancreatic periampullary adenocarcinomas: a propensity score matching analysis. Am J Surg 222(2):377–382

    Article  PubMed  Google Scholar 

  69. Huang L, Tian Y, Wu J et al (2020) The effectiveness, risks and improvement of laparoscopic pancreaticoduodenectomy during the learning curve: a propensity score-matched analysis. Gland Surg 9(4):985–999

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen S, Wu ZL, Wang FM et al (2021) Clinical analysis of laparoscopic and open pancreaticoduodenectomy for distal cholangiocarcinoma. Chin J Gen Surg 36(9):653–657

    Google Scholar 

  71. Wang N, Yang JH, Pan YJ et al (2021) A single-center retrospective study of laparoscopic pancreaticoduodenectomy versus simultaneous open surgery. Chin J Hepatobiliary Surg 27(8):594–598

    Google Scholar 

  72. Jiang KY, Gao FW, Lei ZH et al (2021) Comparative study on perioperative efficacy of laparoscopic and open pancreaticoduodenectomy. Chin J Gen Basic Clin Med 28(3):345–349

    Google Scholar 

  73. Wu ZL, Zhou F, Li LH et al (2021) Safety and efficacy of laparoscopic and open pancreaticoduodenectomy based on propensity score matching. Chin J Hepatobiliary Surg 27(7):520–524

    Google Scholar 

  74. Weng Y, Jiang Y, Fu N et al (2021) Oncological outcomes of robotic-assisted versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a propensity score-matched analysis. Surg Endosc 35:3437–3448

    Article  PubMed  Google Scholar 

  75. Li XL, Zhu DD, Yang CM et al (2015) New progress in minimally invasive pancreaticoduodenectomy. Chin J Gen Surg 24(3):402–407

    Google Scholar 

  76. Nakeeb EL, Sorogy M, Hamed H et al (2019) Biliary leakage following pancreaticoduodenectomy: prevalence, risk factors and management. HBPD Int 18(1):67–72

    PubMed  Google Scholar 

  77. Malgras B, Duron S, Gaujoux S et al (2016) Early biliary complications following pancreaticoduodenectomy: prevalence and risk factors. HPB (Oxford) 18(4):367–374

    Article  PubMed  Google Scholar 

  78. Duconseil P, Turrini O, Ewald J et al (2014) Biliary complications after pancreaticoduodenectomy: skinny bile ducts are surgeons’ enemies. World J Surg 38(11):2946–2951

    Article  PubMed  Google Scholar 

  79. Peng L, Lin S, Li Y et al (2017) Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc 31(8):3085–3097

    Article  PubMed  Google Scholar 

  80. Zhang JC, Hu JP, Li TY et al (2017) Meta-analysis of the short-term efficacy of Da vinci robotic surgical system and laparoscopic pancreaticoduodenectomy. Chin J Dig Surg 16(8):839–843

    Google Scholar 

  81. Chen QM, Liu SY, Liu YH et al (2019) Application of “retrocolonic approach–uncinate process first” in laparoscopic pancreaticoduodenectomy. Chin J Pract Surg 39(12):1321–1325

    Google Scholar 

  82. Pędziwiatr M, Małczak P, Pisarska M et al (2017) Minimally invasive versus open pancreatoduodenectomy-systematic review and meta-analysis. Langenbecks Arch Surg 402(5):841–851

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nickel F, Haney CM, Kowalewski KF et al (2020) Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 271(1):54–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers and editors who participated in the review and MJEditor (www.mjeditor.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by Natural Science Foundation of Jilin Province Science and Technology Department (20190201054JC).

Author information

Authors and Affiliations

Authors

Contributions

Y-WL, S-SD, and KW contributed toward conception and design. None contributed toward administrative support. None contributed toward provision of study materials or patients. Y-WL and S-SD contributed toward collection and assembly of data. Y-WL, S-SD, and KW contributed toward data analysis and interpretation. All authors contributed toward manuscript writing. All authors contributed toward final approval of manuscript.

Corresponding author

Correspondence to Yue-wei Li.

Ethics declarations

Disclosures

Drs. Shan-shan Dong, Kun Wang, Wei Zhang, Yuan-yuan Ni, Fang Xie, Jun-chao Wang, Xing-hui Wang, and Yue-wei Li have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Dong, Ss., Zhang, W. et al. Surgical methods influence on the risk of anastomotic fistula after pancreaticoduodenectomy: a systematic review and network meta-analysis. Surg Endosc 37, 3380–3397 (2023). https://doi.org/10.1007/s00464-022-09832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-022-09832-4

Keywords

Navigation