Skip to main content

Improving vision for surgeons during laparoscopy: the Enhanced Laparoscopic Vision System (ELViS)

This article has been updated



For many abdominal surgical interventions, laparotomy has gradually been replaced by laparoscopy, with numerous benefits for the patient in terms of post-operative recovery. However, during laparoscopy, the endoscope only provides a single viewpoint to the surgeon, leaving numerous blind spots and opening the way to peri-operative adverse events. Alternative camera systems have been proposed, but many lack the requisite resolution/robustness for use during surgery or cannot provide real-time images. Here, we present the added value of the Enhanced Laparoscopic Vision System (ELViS) which overcomes these limitations and provides a broad view of the surgical field in addition to the usual high-resolution endoscope.


Experienced laparoscopy surgeons performed several typical procedure steps on a live pig model. The time-to-completion for surgical exercises performed by conventional endoscopy and ELViS-assisted surgery was measured. A debriefing interview following each operating session was conducted by an ergonomist, and a System Usability Scale (SUS) score was determined.


Proof of concept of ELVIS was achieved in an animal model with seven expert surgeons without peroperative adverse events related to the surgical device. No differences were found in time-to-completion. Mean SUS score was 74.7, classifying the usability of the ELViS as “good”. During the debriefing interview, surgeons highlighted several situations where the ELViS provided a real advantage (such as during instrument insertion, exploration of the abdominal cavity or for orientation during close work) and also suggested avenues for improvement of the system.


This first test of the ELViS prototype on a live animal model demonstrated its usability and provided promising and useful feedback for further development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 12 March 2021

    This article was updated to correct Affiliation 5: “Grenoble University Hospital,” not “University Grenoble Alpes.”


  1. Tanis PJ, Buskens CJ, Bemelman WA (2014) Laparoscopy for colorectal cancer. Best Pract Res Clin Gastroenterol 28:29–39.

    CAS  Article  PubMed  Google Scholar 

  2. van der Pas MH, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WC, Bonjer HJ (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218

    Article  Google Scholar 

  3. Anderson SA, Beierle EA, Chen MK (2014) Role of laparoscopy in the prevention and in the treatment of adhesions. Semin Pediatr Surg 23:353–356.

    Article  Google Scholar 

  4. Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MHGM, de Lange-de Klerk ESM, Lacy AM, Bemelman WA, Andersson J, Angenete E, Rosenberg J, Fuerst A, Haglind E (2015) A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 372:1324–1332.

    CAS  Article  Google Scholar 

  5. Ratti F, Fiorentini G, Cipriani F, Catena M, Paganelli M, Aldrighetti L (2018) Laparoscopic vs open surgery for colorectal liver metastases. JAMA Surg 153:1028.

    Article  PubMed  PubMed Central  Google Scholar 

  6. McMahon AJ, Fullarton G, Baxter JN, O’Dwyer PJ (1995) Bile duct injury and bile leakage in laparoscopic cholecystectomy. Br J Surg 82:307–313.

    CAS  Article  PubMed  Google Scholar 

  7. Pesce A, Palmucci S, La Greca G, Puleo S (2019) Iatrogenic bile duct injury: impact and management challenges. Clin Exp Gastroenterol 12:121–128.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sammour T, Kahokehr A, Srinivasa S, Bissett IP, Hill AG (2011) Laparoscopic colorectal surgery is associated with a higher intraoperative complication rate than open surgery. Ann Surg 253:35–43.

    Article  PubMed  Google Scholar 

  9. Cardin J-L, Johanet H (2011) Intraoperative events and their outcome: data from 4007 laparoscopic interventions by the French “Club Coelio”. J Visc Surg 148:e299–e310.

    Article  PubMed  Google Scholar 

  10. On behalf of the EAES committees, Francis NK, Curtis NJ, Conti JA, Foster JD, Bonjer HJ, Hanna GB (2018) EAES classification of intraoperative adverse events in laparoscopic surgery. Surg Endosc 32:3822–3829.

    Article  Google Scholar 

  11. Curtis NJ, Dennison G, Brown CSB, Hewett PJ, Hanna GB, Stevenson ARL, Francis NK (2019) Clinical evaluation of intraoperative near misses in laparoscopic rectal cancer surgery. Ann Surg.

    Article  Google Scholar 

  12. Cahais J, Schwarz L, Bridoux V, Huet E, Tuech J-J (2017) Is the image “right” for everyone? Introduction to the parallax effect in laparoscopic surgery. J Visc Surg 154:11–14.

    CAS  Article  PubMed  Google Scholar 

  13. Wentink M, Breedveld P, Meijer DW, Stassen HG (2000) Endoscopic camera rotation: a conceptual solution to improve hand-eye coordination in minimally-invasive surgery. Minim Invasive Ther Allied Technol 9:125–131.

    Article  Google Scholar 

  14. Conrad J, Shah AH, Divino CM, Schluender S, Gurland B, Shlasko E, Szold A (2006) The role of mental rotation and memory scanning on the performance of laparoscopic skills: a study on the effect of camera rotational angle. Surg Endosc 20:504–510.

    CAS  Article  PubMed  Google Scholar 

  15. Trilling B, Vijayan S, Goupil C, Kedisseh E, Letouzey A, Barraud PA, Faucheron JL, Fiard G, Voros S (2020) Enhanced laparoscopic vision improves detection of intraoperative adverse events during laparoscopy. IRBM.

    Article  Google Scholar 

  16. Tamadazte B, Agustinos A, Cinquin P, Fiard G, Voros S (2015) Multi-view vision system for laparoscopy surgery. Int J Comput Assist Radiol Surg 10:195–203.

    Article  PubMed  Google Scholar 

  17. Tamadazte B, Fiard G, Long J-A, Cinquin P, Voros S (2013) Enhanced vision system for laparoscopic surgery. Conf Proc IEEE Eng Med Biol Soc 2013:5702–5705.

    Article  Google Scholar 

  18. Voros S, Moreau-Gaudry A, Tamadazte B, Custillon G, Heus R, Montmasson M-P, Giroud F, Gaiffe O, Pieralli C, Fiard G, Long J-A, Descotes J-L, Vidal C, Nguyen-Dinh A, Cinquin P (2013) Devices and systems targeted towards augmented robotic radical prostatectomy. IRBM 34:139–146.

    Article  Google Scholar 

  19. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  Google Scholar 

  20. Barrie J, Russell L, Hood AJ, Jayne DG, Neville A, Culmer PR (2018) An in vivo analysis of safe laparoscopic grasping thresholds for colorectal surgery. Surg Endosc 32:4244–4250.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lallemand C, Gronier G (2016) Méthodes de design UX: 30 méthodes fondamentales pour concevoir et évaluer les systèmes interactifs. Eyrolles, Paris

    Google Scholar 

  22. Brooke J (1996) SUS—a quick and dirty usability scale. Usability Eval Ind 189:4–7

    Google Scholar 

  23. Bangor A (2009) Determining what individual SUS Scores Mean: adding an Adjective Rating Scale. J Usability Stud 4:10

    Google Scholar 

  24. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  25. Hirst A, Philippou Y, Blazeby J, Campbell B, Campbell M, Feinberg J, Rovers M, Blencowe N, Pennell C, Quinn T, Rogers W, Cook J, Kolias AG, Agha R, Dahm P, Sedrakyan A, McCulloch P (2019) No surgical innovation without evaluation: evolution and further development of the IDEAL framework and recommendations. Ann Surg 269:211–220.

    Article  PubMed  Google Scholar 

  26. McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J (2009) No surgical innovation without evaluation: the IDEAL recommendations. The Lancet 374:1105–1112.

    Article  Google Scholar 

  27. Suzuki N, Hattori A (2013) Development of new augmented reality function using intraperitoneal multi-view camera. In: Linte CA, Chen ECS, Berger M-O, Moore JT, Holmes DR (eds) Augmented environments for computer-assisted interventions. Springer, Berlin Heidelberg, pp 67–76

    Chapter  Google Scholar 

  28. Silvestri M, Ranzani T, Argiolas A, Vatteroni M, Menciassi A (2013) A multi-point of view 3D camera system for minimally invasive surgery. Sens Actuators A 202:204–210.

    CAS  Article  Google Scholar 

  29. Castro CA, Alqassis A, Smith S, Ketterl T, Sun Yu, Ross S, Rosemurgy A, Savage PP, Gitlin RD (2013) A wireless robot for networked laparoscopy. IEEE Trans Biomed Eng 60:930–936.

    Article  PubMed  Google Scholar 

  30. Han WK, Tan YK, Olweny EO, Yin G, Liu Z-W, Faddegon S, Scott DJ, Cadeddu JA (2013) Comparison between magnetic anchoring and guidance system camera-assisted laparoendoscopic single-site surgery nephrectomy and conventional laparoendoscopic single-site surgery nephrectomy in a porcine model: focus on ergonomics and workload profiles. J Endourol 27:490–496.

    Article  PubMed  Google Scholar 

  31. Naya Y, Nakamura K, Araki K, Kawamura K, Kamijima S, Imamoto T, Nihei N, Suzuki H, Ichikawa T, Igarashi T (2009) Usefulness of panoramic views for novice surgeons doing retroperitoneal laparoscopic nephrectomy: panoramic views for novice surgeons. Int J Urol 16:177–180.

    Article  PubMed  Google Scholar 

  32. Kim J-J, Watras A, Liu H, Zeng Z, Greenberg J, Heise C, Hu Y, Jiang H (2018) Large-field-of-view visualization utilizing multiple miniaturized cameras for laparoscopic surgery. Micromachines 9:431.

    Article  PubMed Central  Google Scholar 

  33. Sumi Y, Egi H, Hattori M, Suzuki T, Tokunaga M, Adachi T, Sawada H, Mukai S, Kurita Y, Ohdan H (2019) A prospective study of the safety and usefulness of a new miniature wide-angle camera: the “BirdView camera system.” Surg Endosc 33:199–205.

    Article  PubMed  Google Scholar 

  34. Rivas-Blanco I, Sánchez-de-Badajoz E, García-Morales I, Lage-Sánchez JM, Sánchez-Gallegos P, Pérez-del-Pulgar CJ, Muñoz VF (2017) Global vision system in laparoscopy. Actas Urol Esp (English Edition) 41:274–278.

    CAS  Article  Google Scholar 

  35. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré K, Stanbridge D, Fried GM (2005) A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 190:107–113.

    Article  PubMed  Google Scholar 

  36. Martin JA, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84:273–278

    CAS  PubMed  Google Scholar 

  37. Huber T, Paschold M, Schneble F, Poplawski A, Huettl F, Watzka F, Lang H, Kneist W (2018) Structured assessment of laparoscopic camera navigation skills: the SALAS score. Surg Endosc 32:4980–4984.

    CAS  Article  PubMed  Google Scholar 

  38. Berguer R, Smith WD, Chung YH (2001) Performing laparoscopic surgery is significantly more stressful for the surgeon than open surgery. Surg Endosc 15:1204–1207.

    CAS  Article  PubMed  Google Scholar 

  39. Law KE, Lowndes BR, Kelley SR, Blocker RC, Larson DW, Hallbeck MS, Nelson H (2018) NASA-Task Load Index differentiates surgical approach: opportunities for improvement in colon and rectal surgery. Ann Surg 271:906–912.

    Article  Google Scholar 

  40. Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Advances in psychology. Elsevier, Amsterdam, pp 139–183

    Google Scholar 

  41. Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, Butner SE, Smith MK (2001) Transatlantic robot-assisted telesurgery. Nature 413:379–380.

    CAS  Article  PubMed  Google Scholar 

  42. Sotelo R, Nunez Bragayrac LA, Machuca V, Garza Cortes R, Azhar RA (2015) Avoiding and managing vascular injury during robotic-assisted radical prostatectomy. Ther Adv Urol 7:41–48.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee Z, Kaplan J, Giusto L, Eun D (2016) Prevention of iatrogenic ureteral injuries during robotic gynecologic surgery: a review. Am J Obstet Gynecol 214:566–571.

    Article  PubMed  Google Scholar 

  44. Picerno T, Sloan NL, Escobar P, Ramirez PT (2017) Bowel injury in robotic gynecologic surgery: risk factors and management options. A systematic review. Am J Obstet Gynecol 216:10–26.

    Article  PubMed  Google Scholar 

Download references


The authors would like to thank Prof. Jean Luc Bosson and Mr Aboubacar SISSOKO (data stat cell, CHU Grenoble) for their expertise and contribution to the statistical analysis of the data, and Maighread Gallagher-Gambarelli (TWS Scientific Editing) for suggestions on English usage in the paper. The authors would also like to thank the French National Research Agency for funding this work through the DEPORRA2 project—reference ANR-14-CE17-0009, the CQFD LABCOM project—reference ANR-13-LAB3-0002, and the Investissements d'Avenir programme (Labex CAMI—reference ANR-11-LABX-0004).


The work described in this paper was funded by the French National Agency for Research (Agence Nationale de la Recherche) as part of the DEPORRA2 project (reference ANR-14-CE17-0009) and by the French government’s Investissements d'Avenir programme as part of the Labex CAMI (reference ANR-11-LABX-0004).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bertrand Trilling.

Ethics declarations


Dr. Sandrine Voros has registered a patent EP2903495B1 (FR2996437B1). The work described in this paper was funded by the French National Agency for Research (Agence Nationale de la Recherche) as part of the DEPORRA2 project (Reference ANR-14-CE17-0009), by the CQFD LABCOM project (Reference ANR-13-LAB3-0002), and by the French government’s Investissements d'Avenir programme as part of the Labex CAMI (Reference ANR-11-LABX-0004). Sandrine Voros, Bertrand Trilling, Adrian Mancini, Gaëlle Fiard, Pierre Alain Barraud, Marion Decrouez, Sinara Vijayan, Mathias Tummers, Jean Luc Faucheron, Sophie Silvent, Christel Schwartz have no other conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 304104 KB)

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trilling, B., Mancini, A., Fiard, G. et al. Improving vision for surgeons during laparoscopy: the Enhanced Laparoscopic Vision System (ELViS). Surg Endosc 35, 2403–2415 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Distributed laparoscopy
  • Trocar prototype
  • Animal model
  • Phase 0 medical device evaluation
  • Enhanced visualisation