Abstract
Objective
To compare changes in microcirculation blood flow (MCBF) between pulsatile and continuous flow insufflation.
Summary background data
Transanal total mesorectal excision (TaTME) was developed to improve the quality of the resection in rectal cancer surgery. The AirSeal IFS® insufflator facilitates the pelvic dissection, although evidence on the effects that continuous flow insufflation has on MCBF is scarce.
Methods
Thirty-two pigs were randomly assigned to undergo a two-team TaTME procedure with continuous (n = 16) or pulsatile insufflation (n = 16). Each group was stratified according to two different pressure levels in both the abdominal and the transanal fields, 10 mmHg or 14 mmHg. A generalized estimating equations (GEE) model was used.
Results
At an intra-abdominal pressure (IAP) of 10 mmHg, continuous insufflation was associated with a significantly lower MCBF reduction in colon mucosa [13% (IQR 11;14) vs. 21% (IQR 17;24) at 60 min], colon serosa [14% (IQR 9.2;18) vs. 25% (IQR 22;30) at 60 min], jejunal mucosa [13% (IQR 11;14) vs. 20% (IQR 20;22) at 60 min], renal cortex [18% (IQR 15;20) vs. 26% (IQR 26;29) at 60 min], and renal medulla [15% (IQR 11;20) vs. 20% (IQR 19;21) at 90 min]. At an IAP of 14 mmHg, MCBF in colon mucosa decreased 23% (IQR 14;27) in the continuous group and 28% (IQR 26;31) in the pulsatile group (p = 0.034).
Conclusion
TaTME using continuous flow insufflation was associated with a lower MCBF reduction in colon mucosa and serosa, jejunal mucosa, renal cortex, and renal medulla compared to pulsatile insufflation.
This is a preview of subscription content, access via your institution.





References
Penna M, Hompes R, Arnold S et al (2017) Transanal total mesorectal excision: international registry results of the first 720 cases. Ann Surg 266(1):111–117
Xu W, Xu Z, Cheng H et al (2016) Comparison of short-term clinical outcomes between transanal and laparoscopic total mesorectal excision for the treatment of mid and low rectal cancer: a meta-analysis. Eur J Surg Oncol 42(12):1841–1850
Hatipoglu S, Akbulut S, Hatipoglu F, Abdullayev R (2014) Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenterol 20(48):18165–18176
Goitein D, Papasavas P, Yeaney W et al (2005) Microsphere intestinal blood flow analysis during pneumoperitoneum using carbon dioxide and helium. Surg Endosc 19(4):541–545
Williams MD, Murr PC (1993) Laparoscopic insufflation of the abdomen depresses cardiopulmonary function. Surg Endosc 7(1):12–16
Galizia G, Prizio G, Lieto E et al (2001) Hemodynamic and pulmonary changes during open, carbon dioxide pneumoperitoneum and abdominal wall-lifting cholecystectomy. A prospective, randomized study. Surg Endosc 15(5):477–483
Schilling MK, Redaelli C, Krahenbuhl L, Signer C, Buchler MW (1997) Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg 184(4):378–382
Schafer M, Sagesser H, Reichen J, Krahenbuhl L (2001) Alterations in hemodynamics and hepatic and splanchnic circulation during laparoscopy in rats. Surg Endosc 15(10):1197–1201
Sammour T, Mittal A, Loveday BP et al (2009) Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg 96(8):836–850
Bickel A, Drobot A, Aviram M, Eitan A (2007) Validation and reduction of the oxidative stress following laparoscopic operations: a prospective randomized controlled study. Ann Surg 246(1):31–35
Bislenghi G, Wolthuis AM, de Buck van Overstraeten A, D’Hoore A (2015) AirSeal system insufflator to maintain a stable pneumorectum during TAMIS. Techn Coloproctol 19(1):43–45
Nepple KG, Kallogjeri D, Bhayani SB (2013) Benchtop evaluation of pressure barrier insufflator and standard insufflator systems. Surg Endosc 27(1):333–338
Parraga Ros E, Correa-Martin L, Sanchez-Margallo FM et al (2018) Intestinal histopathological changes in a porcine model of pneumoperitoneum-induced intra-abdominal hypertension. Surg Endosc 32(9):3989–4002
Hodeige D, de Pauw M, Eechaute W, Weyne J, Heyndrickx GR (1999) On the validity of blood flow measurement using colored microspheres. Am J Physiol 276(4 Pt 2):H1150–H1158
Hofer CK, Furrer L, Matter-Ensner S et al (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94(6):748–755
Strang CM, Hachenberg T, Freden F, Hedenstierna G (2009) Development of atelectasis and arterial to end-tidal PCO2-difference in a porcine model of pneumoperitoneum. Br J Anaesth 103(2):298–303
Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295(4):H1572–H1579
de Wit C, Jahrbeck B, Schafer C, Bolz SS, Pohl U (1998) Nitric oxide opposes myogenic pressure responses predominantly in large arterioles in vivo. Hypertension 31(3):787–794
Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21(2):152–160
Taura P, Lopez A, Lacy AM et al (1998) Prolonged pneumoperitoneum at 15 mmHg causes lactic acidosis. Surg Endosc 12(3):198–201
Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE (2017) Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation 135(7):700–710
Adelsdorfer C, Taura P, Ibarzabal A et al (2016) Effect of transgastric natural orifice transluminal endoscopic surgery peritoneoscopy on abdominal organ microcirculation: an experimental controlled study. Gastrointest Endosc 83(2):427–433
Herati AS, Andonian S, Rais-Bahrami S et al (2011) Use of the valveless trocar system reduces carbon dioxide absorption during laparoscopy when compared with standard trocars. Urology 77(5):1126–1132
Sroussi J, Elies A, Rigouzzo A et al (2017) Low pressure gynecological laparoscopy (7 mmHg) with AirSeal((R)) System versus a standard insufflation (15 mmHg): a pilot study in 60 patients. J Gynecol Obstet Hum Reprod 46(2):155–158
Annino F, Topazio L, Autieri D, Verdacchi T, De Angelis M, Asimakopoulos AD (2017) Robotic partial nephrectomy performed with Airseal versus a standard CO2 pressure pneumoperitoneum insufflator: a prospective comparative study. Surg Endosc 31(4):1583–1590
Luketina RR, Knauer M, Kohler G et al (2014) Comparison of a standard CO(2) pressure pneumoperitoneum insufflator versus AirSeal: study protocol of a randomized controlled trial. Trials 15:239
Taura P, Ibarzabal A, Vendrell M et al (2016) Pretreatment with endothelium-derived nitric oxide synthesis modulators on gastrointestinal microcirculation during NOTES: an experimental study. Surg Endosc 30(12):5232–5238
Sukhotnik I, Mogilner J, Hayari L et al (2008) Effect of elevated intra-abdominal pressure and 100% oxygen on superior mesenteric artery blood flow and enterocyte turnover in a rat. Pediatr Surg Int 24(12):1347–1353
Tytgat SH, Rijkers GT, van der Zee DC (2012) The influence of the CO(2) pneumoperitoneum on a rat model of intestinal anastomosis healing. Surg Endosc 26(6):1642–1647
Schafer M, Krahenbuhl L (2001) Effect of laparoscopy on intra-abdominal blood flow. Surgery 129(4):385–389
Nguyen NT, Perez RV, Fleming N, Rivers R, Wolfe BM (2002) Effect of prolonged pneumoperitoneum on intraoperative urine output during laparoscopic gastric bypass. J Am Coll Surg 195(4):476–483
Andersson LE, Jogestrand T, Thorne A, Sollevi A, Odeberg-Wernerman S (2005) Are there changes in leg vascular resistance during laparoscopic cholecystectomy with CO2 pneumoperitoneum? Acta Anaesthesiol Scand 49(3):360–365
Shin S, Na S, Kim OS, Choi YS, Kim SH, Oh YJ (2016) Effect of pneumoperitoneum on oxidative stress and inflammation via the arginase pathway in rats. Yonsei Med J 57(1):238–246
Abassi Z, Bishara B, Karram T, Khatib S, Winaver J, Hoffman A (2008) Adverse effects of pneumoperitoneum on renal function: involvement of the endothelin and nitric oxide systems. Am J Physiol Regul Integr Comp Physiol 294(3):R842–R850
Wang R, Pan Q, Kuebler WM, Li JK, Pries AR, Ning G (2017) Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network. Microvasc Res 113:40–49
Altintas F, Tunali Y, Bozkurt P et al (2001) An experimental study on the relationship of intra-abdominal pressure and renal ischemia. Middle East J Anaesthesiol 16(1):55–66
Carmona M, Lopes RI, Borba M et al (2008) Comparison of the effects of carbon dioxide and helium pneumoperitoneum on renal function. J Endourol 22(5):1077–1082
Chiu AW, Chang LS, Birkett DH, Babayan RK (1996) Changes in urinary output and electrolytes during gaseous and gasless laparoscopy. Urol Res 24(6):361–366
Nicholson G, Knol J, Houben B, Cunningham C, Ashraf S, Hompes R (2015) Optimal dissection for transanal total mesorectal excision using modified CO2 insufflation and smoke extraction. Colorectal Dis 17(11):O265–O267
Mosing M, Bohm SH, Rasis A et al (2018) Physiologic factors influencing the arterial-to-end-tidal CO2 difference and the alveolar dead space fraction in spontaneously breathing anesthetised horses. Front Vet Sci 5:58
Acknowledgements
The authors acknowledge Conmed Corporation for the partial support of the trial with unrestricted funds, as well as Ms. Anna Escalante, Ms. Elena Ramentol and Dr. Jacqueline van Laarhoven for their collaboration to the achievement of this work.
Funding
This trial was partially supported by unrestricted funds from Conmed Corporation, which was used for the purchase of the colored microspheres, the PICCO catheter, several anesthetic fungible material and drugs, the process of the samples and to cover the costs of the animals and incineration. Moreover, it was also used for part-time employment of the person in charge of the tissue blood flow and endothelium-derived mediators’ analysis (Anna Escalante). The design of the study, the statistical analyses and the writing of the manuscript were performed independently of these funds.
Author information
Authors and Affiliations
Contributions
Conception and design: FBL, PT, RD, AML. Administrative support: none. Provision of study material or patients: FBL, PT, RD, AML. Collection and assembly of data: FBL, PT, MCA, JST, RB, AI, RP. Data analysis and interpretation: FBL, PT, JR, AML. Manuscript writing (including critical revising): all authors. Manuscript final approval: all authors.
Corresponding author
Ethics declarations
Conflict of interest
Apart from the funding previously mentioned, Dr. AM Lacy is a consultant for Medtronic, Conmed Corporation, Olympus Medical, Touchstone International Medical Science Co. Ltd., Applied Medical, and Johnson & Johnson. Dr. de Lacy, Dr. Taurà, Dr. Arroyave, Dr. Trépanier, Mr. Ríos, Dr. Bravo, Dr. Ibarzabal, Dr. Pena and Dr. Deulofeu have no other conflicts of interest or financial ties to disclose.
Ethical approval
The Institutional Review Board of the Hospital Clinic approved this trial for the Care and Use of Laboratory Animals. The University of Barcelona Committee on Ethics in Animal Experimentation and the Catalan Department of the Environment Commission on Animal Experimentation granted ethical approval for the study (Reg. 0006S/11367/2015).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
de Lacy, F.B., Taurà, P., Arroyave, M.C. et al. Impact of pneumoperitoneum on intra-abdominal microcirculation blood flow: an experimental randomized controlled study of two insufflator models during transanal total mesorectal excision. Surg Endosc 34, 4494–4503 (2020). https://doi.org/10.1007/s00464-019-07236-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00464-019-07236-5
Keywords
- Transanal total mesorectal excision
- Randomized controlled trial
- Continuous insufflation
- Colored microspheres