Skip to main content

Advertisement

Log in

Use of magnets in gastrointestinal surgery

  • Review Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Laparoscopic and endoscopic surgery has undergone vast progress during the last 2 decades, translating into improved patient outcomes. A prime example of this development is the use of magnetic devices in gastrointestinal surgery. Magnetic devices have been developed and implemented for both laparoscopic and endoscopic surgery, providing alternatives for retraction, anchoring, and compression among other critical surgical steps. The purpose of this review is to explore the use of magnetic devices in gastrointestinal surgery, and describe different magnetic technologies, current applications, and future directions.

Methods

IRB approval and written consent were not required. In this review of the existing literature, we offer a critical examination at the use of magnets for gastrointestinal surgery currently described. We show the experiences done to date, the benefits in laparoscopic and endoscopic surgery, and additional future implications.

Results

Magnetic devices have been tested in the field of gastrointestinal surgery, both in the contexts of animal and human experimentation. Magnets have been mainly used for retraction, anchoring, mobilization, and anastomosis.

Conclusion

Research into the use of magnets in gastrointestinal surgery offers promising results. The integration of these technologies in minimally invasive surgery provides benefits in various procedures. However, more research is needed to continually evaluate their impact and implementation into surgical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from The Journal of Urology, Vol 178, Zeltser, et al. Single Trocar Laparoscopic Nephrectomy Using Magnetic Anchoring and Guidance System in the Porcine Model. Copyright 2007, used with permission from Elsevier

Fig. 2
Fig. 3

Reprinted from Journal of Pediatric Surgery, Vol 44, Jamshidi, et al. Magnamosis: magnetic compression anastomosis with comparison to suture and staple techniques. Copyright 2009, used with permission from Elsevier

Fig. 4

Reprinted from Gastrointestinal Endoscopy, Vol 83, Ryou, et al. Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model. Copyright 2016, used with permission from Elsevier

Fig. 5

Reprinted from Gastrointestinal Endoscopy, Vol 86, Machytka, et al. Partial jejunal diversion using an incisionless magnetic anastomosis system: 1-year interim results in patients with obesity and diabetes. Copyright 2017, used with permission from Elsevier

Fig. 6

Reprinted from Gastrointestinal Endoscopy, Vol 87, Matsuzaki, et al. Magnetic anchor-guided endoscopic submucosal dissection for gastric lesions (with video). Copyright 2018, used with permission from Elsevier

Similar content being viewed by others

References

  1. Equen M, Roach G, Brown R, Bennett T (1957) Magnetic removal of foreign bodies from the esophagus, stomach and duodenum. AMA Arch Otolaryngol 66(6):698–706

    Article  CAS  PubMed  Google Scholar 

  2. Cantillon-Murphy P, Cundy TP, Patel NK, Yang GZ, Darzi A, Teare JP (2015) Magnets for therapy in the GI tract: a systematic review. Gastrointest Endosc 82(2):237–245

    Article  PubMed  Google Scholar 

  3. Lee JH (2018) Foreign body ingestion in children. Clin Endosc 51(2):129–136

    Article  PubMed  PubMed Central  Google Scholar 

  4. International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to static magnetic fields. 2009 April. Report No.: 0017-9078 Contract No.: 4

  5. Bunch KJ, Swanson J, Vincent TJ, Murphy MF (2015) Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables. J Radiol Prot 35(3):695–705

    Article  CAS  PubMed  Google Scholar 

  6. Kheifets L, Crespi CM, Hooper C, Cockburn M, Amoon AT, Vergara XP (2017) Residential magnetic fields exposure and childhood leukemia: a population-based case-control study in California. Cancer Causes Control 28(10):1117–1123

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buia A, Stockhausen F, Hanisch E (2015) Laparoscopic surgery: a qualified systematic review. World J Methodol 5(4):238–254

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mayol J, Garcia-Aguilar J, Ortiz-Oshiro E, De-Diego Carmona JA, Fernandez-Represa JA (1997) Risks of the minimal access approach for laparoscopic surgery: multivariate analysis of morbidity related to umbilical trocar insertion. World J Surg 21(5):529–533

    Article  CAS  PubMed  Google Scholar 

  9. Wagh MS, Thompson CC (2007) Surgery insight: natural orifice transluminal endoscopic surgery—an analysis of work to date. Nat Clin Pract Gastroenterol Hepatol 4(7):386–392

    Article  PubMed  Google Scholar 

  10. Gettman MT, Blute ML (2007) Transvesical peritoneoscopy: initial clinical evaluation of the bladder as a portal for natural orifice translumenal endoscopic surgery. Mayo Clin Proc 82(7):843–845

    Article  Google Scholar 

  11. Dunkin BJ (2010) Natural orifice transluminal endoscopic surgery: educational challenge. World J Gastrointest Surg 2(6):224–230

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fader AN, Cohen S, Escobar PF, Gunderson C (2010) Laparoendoscopic single-site surgery in gynecology. Curr Opin Obstet Gynecol 22(4):331–338

    PubMed  Google Scholar 

  13. Escobar PF, Starks D, Fader AN, Catenacci M, Falcone T (2010) Laparoendoscopic single-site and natural orifice surgery in gynecology. Fertil Steril 94(7):2497–2502

    Article  PubMed  Google Scholar 

  14. Mencaglia L, Mereu L, Carri G, Arena I, Khalifa H, Tateo S et al (2013) Single port entry—are there any advantages? Best Pract Res Clin Obstet Gynaecol 27(3):441–455

    Article  CAS  PubMed  Google Scholar 

  15. Scott DJ, Tang SJ, Fernandez R, Bergs R, Goova MT, Zeltser I et al (2007) Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc 21(12):2308–2316

    Article  PubMed  Google Scholar 

  16. Park S, Bergs RA, Eberhart R, Baker L, Fernandez R, Cadeddu JA (2007) Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor. Ann Surg 245(3):379–384

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zeltser IS, Bergs R, Fernandez R, Baker L, Eberhart R, Cadeddu JA (2007) Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model. J Urol 178(1):288–291

    Article  PubMed  Google Scholar 

  18. Cadeddu J, Fernandez R, Desai M, Bergs R, Tracy C, Tang SJ et al (2009) Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience. Surg Endosc 23(8):1894–1899

    Article  PubMed  Google Scholar 

  19. Dominguez G, Durand L, De Rosa J, Danguise E, Arozamena C, Ferraina PA (2009) Retraction and triangulation with neodymium magnetic forceps for single-port laparoscopic cholecystectomy. Surg Endosc 23(7):1660–1666

    Article  PubMed  Google Scholar 

  20. Choi YH, Lee HW, Lee SY, Han DH, Seo SI, Jeon SS et al (2016) Laparoendoscopic single-site simple nephrectomy using a magnetic anchoring system in a porcine model. Investig Clin Urol 57(3):208–214

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rivas H, Robles I, Riquelme F, Vivanco M, Jimenez J, Marinkovic B et al (2018) Magnetic surgery: results from first prospective clinical trial in 50 patients. Ann Surg 267(1):88–93

    Article  PubMed  Google Scholar 

  22. Haskins IN, Strong AT, Allemang MT, Bencsath KP, Rodriguez JH, Kroh MD (2018) Magnetic surgery: first U.S. experience with a novel device. Surg Endosc 32(2):895–899

    Article  PubMed  Google Scholar 

  23. Guerron AD, Ortega C, Park C, Portenier D (2017) Magnetic robot-assisted single-incision cholecystectomy. CRSLS 2017:e2017.00073

    Google Scholar 

  24. Davis M, Davalos G, Ortega C, Chen S, Schimpke S, Jain-Spangler K et al (2019) Magnetic liver retraction: an incision-less approach for less invasive bariatric surgery. Obesity Surg. https://doi.org/10.1007/s11695-018-03655-w

    Article  Google Scholar 

  25. Steinberg RL, Johnson BA, Cadeddu JA (2018) Magnetic-assisted robotic surgery: initial case series of reduced-port robotic prostatectomy. J Robotic Surg. https://doi.org/10.1007/s11701-018-0889-z

    Article  Google Scholar 

  26. El-Serag HB, Sweet S, Winchester CC, Dent J (2014) Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63(6):871–880

    Article  PubMed  Google Scholar 

  27. Lundell L, Miettinen P, Myrvold HE, Hatlebakk JG, Wallin L, Engstrom C et al (2009) Comparison of outcomes twelve years after antireflux surgery or omeprazole maintenance therapy for reflux esophagitis. Clin Gastroenterol Hepatol 7(12):1292–1298 (quiz 60)

    Article  PubMed  Google Scholar 

  28. Bonavina L, Saino G, Lipham JC, Demeester TR (2013) LINX((R)) reflux management system in chronic gastroesophageal reflux: a novel effective technology for restoring the natural barrier to reflux. Ther Adv Gastroenterol 6(4):261–268

    Article  Google Scholar 

  29. Skubleny D, Switzer NJ, Dang J, Gill RS, Shi X, de Gara C et al (2017) LINX((R)) magnetic esophageal sphincter augmentation versus Nissen fundoplication for gastroesophageal reflux disease: a systematic review and meta-analysis. Surg Endosc 31(8):3078–3084

    Article  PubMed  Google Scholar 

  30. Garude K, Tandel C, Rao S, Shah NJ (2013) Single layered intestinal anastomosis: a safe and economic technique. Indian J Surg 75(4):290–293

    Article  PubMed  Google Scholar 

  31. Murphy J (1982) Cholecysto-intestinal, gastro-intestinal, entero-intestinal anastomosis, and approximation without sutures. Med Red NY 42:665–676

    Google Scholar 

  32. Kaidar-Person O, Rosenthal RJ, Wexner SD, Szomstein S, Person B (2008) Compression anastomosis: history and clinical considerations. Am J Surg 195(6):818–826

    Article  PubMed  Google Scholar 

  33. Jamshidi R, Stephenson JT, Clay JG, Pichakron KO, Harrison MR (2009) Magnamosis: magnetic compression anastomosis with comparison to suture and staple techniques. J Pediatr Surg 44(1):222–228

    Article  PubMed  Google Scholar 

  34. Pichakron KO, Jelin EB, Hirose S, Curran PF, Jamshidi R, Stephenson JT et al (2011) Magnamosis II: magnetic compression anastomosis for minimally invasive gastrojejunostomy and jejunojejunostomy. J Am Coll Surg 212(1):42–49

    Article  PubMed  Google Scholar 

  35. Gonzales KD, Douglas G, Pichakron KO, Kwiat DA, Gallardo SG, Encinas JL et al (2012) Magnamosis III: delivery of a magnetic compression anastomosis device using minimally invasive endoscopic techniques. J Pediatr Surg 47(6):1291–1295

    Article  PubMed  Google Scholar 

  36. Wall J, Diana M, Leroy J, Deruijter V, Gonzales KD, Lindner V et al (2013) MAGNAMOSIS IV: magnetic compression anastomosis for minimally invasive colorectal surgery. Endoscopy 45(8):643–648

    Article  CAS  PubMed  Google Scholar 

  37. Graves CH, Masic R, Imamura-Ching S, Harrison J, Stoller M (2016) Magnetic bowel anastomosis: first-in-human magnamosis application. J Urol 195(4):e1066

    Google Scholar 

  38. Toselli L, Martinez-Ferro M, Cervio G, Kwiat D, Imamura-Ching J, Graves CE et al (2017) Magnetic compression anastomosis (magnamosis) for functional undiversion of ileostomy in pediatric patients. J Laparoendosc Adv Surg Tech A 27(12):1314–1317

    Article  PubMed  Google Scholar 

  39. Graves CE, Co C, Hsi RS, Kwiat D, Imamura-Ching J, Harrison MR et al (2017) Magnetic compression anastomosis (magnamosis): first-in-human trial. J Am Coll Surg 225(5):676-81.e1

    Article  Google Scholar 

  40. Ryou M, Agoston AT, Thompson CC (2016) Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model. Gastrointest Endosc 83(4):821–825

    Article  PubMed  Google Scholar 

  41. Ryou M, Aihara H, Thompson CC (2016) Minimally invasive entero-enteral dual-path bypass using self-assembling magnets. Surg Endosc 30(10):4533–4538

    Article  PubMed  Google Scholar 

  42. Machytka E, Buzga M, Zonca P, Lautz DB, Ryou M, Simonson DC et al (2017) Partial jejunal diversion using an incisionless magnetic anastomosis system: 1-year interim results in patients with obesity and diabetes. Gastrointest Endosc 86(5):904–912

    Article  PubMed  Google Scholar 

  43. Zaritzky M, Ben R, Zylberg GI, Yampolsky B (2009) Magnetic compression anastomosis as a nonsurgical treatment for esophageal atresia. Pediatr Radiol 39(9):945–949

    Article  PubMed  Google Scholar 

  44. Dorman RM, Vali K, Harmon CM, Zaritzky M, Bass KD (2016) Repair of esophageal atresia with proximal fistula using endoscopic magnetic compression anastomosis (magnamosis) after staged lengthening. Pediatr Surg Int 32(5):525–528

    Article  PubMed  Google Scholar 

  45. Ellebaek MBB, Qvist N, Rasmussen L (2018) Magnetic Compression anastomosis in long-gap esophageal atresia gross type A: a case report. Eur J Pediatr Surg Rep 6(1):e37–e39

    Article  Google Scholar 

  46. Takao S, Matsuo Y, Shinchi H, Nakajima S, Aikou T, Iseji T et al (2001) Magnetic compression anastomosis for benign obstruction of the common bile duct. Endoscopy 33(11):988–990

    Article  CAS  PubMed  Google Scholar 

  47. Jang SI, Lee KH, Yoon HJ, Lee DK (2017) Treatment of completely obstructed benign biliary strictures with magnetic compression anastomosis: follow-up results after recanalization. Gastrointest Endosc 85(5):1057–1066

    Article  PubMed  Google Scholar 

  48. Nakaseko Y, Shiba H, Yamanouchi E, Takano Y, Sakamoto T, Imazu H et al (2017) Successful treatment of stricture of duct-to-duct biliary anastomosis after living-donor liver transplantation of the left lobe: a case report. Transpl Proc 49(7):1644–1648

    Article  Google Scholar 

  49. Zhang H, Xue F, Zhang J, Liu W, Dong D, Zhu H et al (2017) A novel magnetic device for laparoscopic cholangiojejunostomy. J Surg Res 218:271–276

    Article  PubMed  Google Scholar 

  50. Fan C, Zhang H, Yan X, Ma J, Wang C, Lv Y (2018) Advanced Roux-en-Y hepaticojejunostomy with magnetic compressive anastomats in obstructive jaundice dog models. Surg Endosc 32(2):779–789

    Article  PubMed  Google Scholar 

  51. Liu XM, Yan XP, Zhang HK, Ma F, Guo YG, Fan C et al (2018) Magnetic anastomosis for biliojejunostomy: first prospective clinical trial. World J Surg 42(12):4039–4045

    Article  PubMed  Google Scholar 

  52. Liu XM, Li Y, Xiang JX, Ma F, Lu Q, Guo YG et al (2018) Magnetic compression anastomosis for biliojejunostomy and pancreaticojejunostomy in Whipple’s procedure: an initial clinical study. J Gastroenterol Hepatol. https://doi.org/10.1111/jgh.14500

    Article  PubMed  Google Scholar 

  53. Saito Y, Kawano H, Takeuchi Y, Ohata K, Oka S, Hotta K et al (2012) Current status of colorectal endoscopic submucosal dissection in Japan and other Asian countries: progressing towards technical standardization. Dig Endosc 24(Suppl 1):67–72

    Article  PubMed  Google Scholar 

  54. Draganov PV, Gotoda T, Chavalitdhamrong D, Wallace MB (2013) Techniques of endoscopic submucosal dissection: application for the Western endoscopist? Gastrointest Endosc 78(5):677–688

    Article  PubMed  Google Scholar 

  55. Bhatt A, Abe S, Kumaravel A, Vargo J, Saito Y (2015) Indications and techniques for endoscopic submucosal dissection. Am J Gastroenterol 110(6):784–791

    Article  PubMed  Google Scholar 

  56. Cao Y, Liao C, Tan A, Gao Y, Mo Z, Gao F (2009) Meta-analysis of endoscopic submucosal dissection versus endoscopic mucosal resection for tumors of the gastrointestinal tract. Endoscopy 41(9):751–757

    Article  CAS  PubMed  Google Scholar 

  57. Imaeda H, Hosoe N, Kashiwagi K, Ohmori T, Yahagi N, Kanai T et al (2014) Advanced endoscopic submucosal dissection with traction. World J Gastrointest Endosc 6(7):286–295

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi T, Gotohda T, Tamakawa K, Ueda H, Kakizoe T (2004) Magnetic anchor for more effective endoscopic mucosal resection. Jpn J Clin Oncol 34(3):118–123

    Article  PubMed  Google Scholar 

  59. Kondo H, Gotoda T, Ono H, Oda I, Kozu T, Fujishiro M et al (2004) Percutaneous traction-assisted EMR by using an insulation-tipped electrosurgical knife for early stage gastric cancer. Gastrointest Endosc 59(2):284–288

    Article  PubMed  Google Scholar 

  60. Aihara H, Ryou M, Kumar N, Ryan MB, Thompson CC (2014) A novel magnetic countertraction device for endoscopic submucosal dissection significantly reduces procedure time and minimizes technical difficulty. Endoscopy 46(5):422–425

    Article  PubMed  PubMed Central  Google Scholar 

  61. Matsuzaki I, Miyahara R, Hirooka Y, Funasaka K, Furukawa K, Ohno E et al (2014) Simplified magnetic anchor-guided endoscopic submucosal dissection in dogs (with videos). Gastrointest Endosc 80(4):712–716

    Article  PubMed  Google Scholar 

  62. Matsuzaki I, Hattori M, Hirose K, Esaki M, Yoshikawa M, Yokoi T et al (2018) Magnetic anchor-guided endoscopic submucosal dissection for gastric lesions (with video). Gastrointest Endosc 87(6):1576–1580

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo D. Guerron.

Ethics declarations

Disclosures

Dr. Portenier reports Medtronic/Consulting/Research Grant; Intuitive Consulting/Research Grant; Levita/Education Grant; Teleflex/Consulting. Dr. Guerron reports Levita/Consultant: Medtronic/Speaker; Gore/Speaker. Dr. Diaz, Dr. Davalos, and Dr. Welsh have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, R., Davalos, G., Welsh, L.K. et al. Use of magnets in gastrointestinal surgery. Surg Endosc 33, 1721–1730 (2019). https://doi.org/10.1007/s00464-019-06718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-019-06718-w

Keywords

Navigation