Surgical Endoscopy

, Volume 32, Issue 6, pp 2923–2931 | Cite as

Arterioportal shunting, splanchnic capillary perfusion, and the effects of colloids during capnoperitoneum in neonatal and adolescent pigs

  • J. F. Kuebler
  • N. Schukfeh
  • G. Vieten
  • W. A. Osthaus
  • D. Huber
  • N. Dennhard
  • R. Suempelmann
  • B. M. Ure
  • M. L. Metzelder
Article

Abstract

Background

Clinical and experimental data indicate that neonates are sensitive to the CO2 pneumoperitoneum. An impaired splanchnic perfusion during laparoscopy in adults has been reported. We recently confirmed that intravenous colloids improve macrocirculatory function in neonates. We aimed to determine the impact of CO2 pneumoperitoneum on the perfusion of splanchnic organs in the young including effects of colloid application.

Methods

Male piglets (n = 25) were divided into four groups: (1) neonatal controls, (2) neonates with crystalloid restitution, (3) neonates with colloidal restitution, and (4) adolescents with crystalloid restitution. Animals were ventilated and subjected to a 3-h, 10 mmHg CO2 pneumoperitoneum followed by 2 h resuscitation. Hepatic, splanchnic, and arteriovenous shunt perfusion was assessed via central and portal venous catheters. Capillary organ flow was detected by fluorescent microspheres. The rate of bile flow was measured.

Results

The neonatal crystalloid group showed a significant decrease in the intestinal capillary perfusion at the end of the recovery period. This was not detectable in the adolescent and colloid group. There was a significant increase in microcirculatory arterioportal shunt flow during the CO2 pneumoperitoneum in both neonatal groups but not in the sham and adolescent groups (p < 0.05). Hepatic arterial perfusion increased after insufflation in all groups and dropped during capnoperitoneum to levels of about 70% baseline. There was no significant impairment of splanchnic perfusion or bile flow as a result of the pneumoperitoneum in all groups.

Conclusions

Capillary perfusion of the abdominal organs was stable during capnoperitoneum and recovery in adolescents and neonates with colloid restitution, but not with crystalloid restitution. Significant arterioportal shunting during capnoperitoneum could affect hepatic microcirculation in neonates. Our data confirm that moderate pressure capnoperitoneum has no major effect on the perfusion of abdominal organs in neonates with adequate substitution.

Keywords

Pneumoperitoneum Hepatic arterial perfusion Laparoscopy Microcirculation Pediatric 

Notes

Compliance with ethical standards

Disclosure

Dr. JF Kuebler, Dr. N. Schukfeh, Dr. G. Vieten, Prof. AW Osthaus, Dr. D. Huber, Dr. N. Dennhard, Prof. R. Suempelmann, Prof. BM Ure, and Prof. ML Metzelder have no conflict of interest or financial ties to disclose.

References

  1. 1.
    Gómez Dammeier BH, Karanik E, Glüer S, Jesch NK, Kübler J, Latta K, Sümpelmann R, Ure BM (2005) Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg 9:1454–1458CrossRefGoogle Scholar
  2. 2.
    Kalfa N, Allal H, Raux O, Lopez M, Forgues D, Guibal MP, Picaud JC, Galifer RB (2005) Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics 6:785–791CrossRefGoogle Scholar
  3. 3.
    Sümpelmann R, Schuerholz T, Marx G, Jesch NK, Osthaus WA, Ure BM (2006) Hemodynamic changes during acute elevation of intra-abdominal pressure in rabbits. Paediatr Anaesth 12:1262–1267CrossRefGoogle Scholar
  4. 4.
    Metzelder ML, Kuebler JF, Huber D, Vieten G, Suempelmann R, Ure BM, Osthaus WA (2010) Cardiovascular responses to prolonged carbon dioxide pneumoperitoneum in neonatal versus adolescent pigs. Surg Endosc 3:670–674CrossRefGoogle Scholar
  5. 5.
    Eleftheriadis E, Kotzampassi K, Botsios D, Tzartinoglou E, Farmakis H, Dadoukis J (1996) Splanchnic ischemia during laparoscopic cholecystectomy. Surg Endosc 3:324–326CrossRefGoogle Scholar
  6. 6.
    Schilling MK, Redaelli C, Krähenbühl L, Signer C, Büchler MW (1997) Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg 4:378–382Google Scholar
  7. 7.
    Junghans T, Böhm B, Gründel K, Schwenk W, Müller JM (1997) Does pneumoperitoneum with different gases, body positions, and intraperitoneal pressures influence renal and hepatic blood flow? Surgery 121:206–211CrossRefPubMedGoogle Scholar
  8. 8.
    Klopfenstein CE, Morel DR, Clergue F, Pastor CM (1998) Effects of abdominal CO2insufflation and changes of position on hepatic blood flow in anesthetized pigs. Am J Physiol 275:900–905CrossRefGoogle Scholar
  9. 9.
    Takagi S (1998) Hepatic and portal vein blood flow during carbon dioxide pneumoperitoneum for laparoscopic hepatectomy. Surg Endosc 12:427–431CrossRefPubMedGoogle Scholar
  10. 10.
    Sala-Blanch X, Fontanals J, Martinez-Palli G (1998) Effects of carbon dioxide vs helium pneumoperitoneum on hepatic blood flow. Surg Endosc 12:1121–1125CrossRefPubMedGoogle Scholar
  11. 11.
    Windberger UB, Auer R, Keplinger F, Längle F, Heinze G, Schindl M, Losert UM (1999) The role of intra-abdominal pressure on splanchnic and pulmonary hemodynamic and metabolic changes during carbon dioxide pneumoperitoneum. Gastrointest Endosc 49:84–91CrossRefPubMedGoogle Scholar
  12. 12.
    Kotzampassi K, Paramythiotis D, Eleftheriadis E (2000) Deterioration of visceral perfusion caused by intra-abdominal hypertension in pigs ventilated with positive end-expiratory pressure. Surg Today 30:987–992CrossRefPubMedGoogle Scholar
  13. 13.
    Pastor CM, Morel DR, Clergue F, Mentha G, Morel P (2001) Effects of abdominal CO2insufflation on renal and hepatic blood flows during acute hemorrhage in anesthetized pigs. Crit Care Med 29:1017–1022CrossRefPubMedGoogle Scholar
  14. 14.
    Schmandra TC, Kim ZG, Gutt CN (2001) Effect of insufflation gas and intraabdominal pressure on portal venous flow during pneumoperitoneum in the rat. Surg Endosc 15:405–408CrossRefPubMedGoogle Scholar
  15. 15.
    Yokoyama Y, Alterman DM, Sarmadi AH, Baveja R, Zhang JX, Huynh T, Clemens MG (2002) Hepatic vascular response to elevated intraperitoneal pressure in the rat. J Surg Res 105:86–94CrossRefPubMedGoogle Scholar
  16. 16.
    Leister I, Schüler P, Vollmar B, Füzesi L, Kahler E, Becker H, Markus PM (2004) Microcirculation and excretory function of the liver under conditions of carbon dioxide pneumoperitoneum. Surg Endosc 18:1358–1363CrossRefPubMedGoogle Scholar
  17. 17.
    Meierhenrich R, Gauss A, Vandenesch P, Georgieff M, Poch B, Schütz W (2005) The effects of intraabdominally insufflated carbon dioxide on hepatic blood flow during laparoscopic surgery assessed by transesophageal echocardiography. Anesth Analg 100:340–347CrossRefPubMedGoogle Scholar
  18. 18.
    Ali NA, Eubanks WS, Stamler JS, Gow AJ, Lagoo-Deenadayalan SA, Villegas L, El-Moalem HE, Reynolds JD (2005) A method to attenuate pneumoperitoneum-induced reductions in splanchnic blood flow. Ann Surg 241:256–261CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goitein D, Papasavas P, Yeaney W, Gagne D, Hayetian F, Caushaj P, Keenan R, Landreneau R (2005) Microsphere intestinal blood flow analysis during pneumoperitoneum using carbon dioxide and helium. Surg Endosc 19:541–545CrossRefPubMedGoogle Scholar
  20. 20.
    Junghans T, Neudecker J, Dörner F, Raue W, Haase O, Schwenk W (2005) Effect of increasing cardiac preload, sympathetic antagonism, or vasodilation on visceral blood flow during pneumoperitoneum. Langenb Arch Surg 390:538–543CrossRefGoogle Scholar
  21. 21.
    Szold A, Weinbroum AA (2008) Carbon dioxide pneumoperitoneum-related liver injury is pressure dependent: a study in an isolated-perfused organ model. Surg Endosc 22:365–371CrossRefPubMedGoogle Scholar
  22. 22.
    Berger M, Goedeke J, Hubertus J, Muensterer O, Ring-Mrozik E, von Schweinitz D, Lacher M (2012) Physiological impact of pneumoperitoneum on gastric mucosal CO2pressure during laparoscopic versus open appendectomy in children. J Laparoendosc Adv Surg Tech A 22:107–112CrossRefPubMedGoogle Scholar
  23. 23.
    Sánchez-Etayo G, Borrat X, Escobar B, Hessheimer A, Rodriguez-Laiz G, Taura P (2012) Effect of intra-abdominal pressure on hepatic microcirculation: implications of the endothelin-1 receptor. J Dig Dis 13:478–485CrossRefPubMedGoogle Scholar
  24. 24.
    Hoekstra LT, Ruys AT, Milstein DM, van Samkar G, van Berge Henegouwen MI, Heger M, Verheij J, van Gulik TM (2013) Effects of prolonged pneumoperitoneum on hepatic perfusion during laparoscopy. Ann Surg 257:302–307CrossRefPubMedGoogle Scholar
  25. 25.
    Chadi SA, Abdo H, Bihari A, Parry N, Lawendy AR (2015) Hepatic microvascular changes in rat abdominal compartment syndrome. J Surg Res 197:398–404CrossRefPubMedGoogle Scholar
  26. 26.
    Adelsdorfer C, Taura P, Ibarzabal A, Vendrell M, Delitala A, Deulofeu R, Adelsdorfer W, Delgado S, Lacy AM (2016) Effect of transgastric natural orifice transluminal endoscopic surgery peritoneoscopy on abdominal organ microcirculation: an experimental controlled study. Gastrointest Endosc 83:427–433CrossRefPubMedGoogle Scholar
  27. 27.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377CrossRefPubMedGoogle Scholar
  28. 28.
    Lauterbach M, Horstick G, Plum N, Weilemann LS, Münzel T, Kempski O, Pries AR (2006) Shunting of the microcirculation after mesenteric ischemia and reperfusion is a function of ischemia time and increases mortality. Microcirculation 13:411–422CrossRefPubMedGoogle Scholar
  29. 29.
    Pries AR, Höpfner M, le Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10:587–593CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reglin B, Pries AR (2014) Metabolic control of microvascular networks: oxygen sensing and beyond. J Vasc Res 51:376–392CrossRefPubMedGoogle Scholar
  31. 31.
    Thomson IA, Fitch W, Hughes RL, Campbell D (1983) Effect of increased concentrations of carbon dioxide during halothane anaesthesia on liver blood flow and hepatic oxygen consumption. Br J Anaesth 55:1231–1237CrossRefPubMedGoogle Scholar
  32. 32.
    Lautt WW (2007) Regulatory processes interacting to maintain hepatic blood flow constancy: vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration,escape from vasoconstriction. Hepatol Res 37:891–903CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Richter S, Olinger A, Hildebrandt U, Menger MD, Vollmar B (2001) Loss of physiologic hepatic blood flow control (“hepatic arterial buffer response”)during CO2-pneumoperitoneum in the rat. Anesth Analg 93:872–877CrossRefPubMedGoogle Scholar
  34. 34.
    Atila K, Terzi C, Ozkardesler S, Unek T, Guler S, Ergor G, Bora S, Gulay H (2009) What is the role of the abdominal perfusion pressure for subclinical hepatic dysfunction in laparoscopic cholecystectomy? J Laparoendosc Adv Surg Tech A 19:39–44CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • J. F. Kuebler
    • 1
  • N. Schukfeh
    • 1
  • G. Vieten
    • 1
  • W. A. Osthaus
    • 2
  • D. Huber
    • 2
  • N. Dennhard
    • 2
  • R. Suempelmann
    • 2
  • B. M. Ure
    • 1
  • M. L. Metzelder
    • 1
    • 3
  1. 1.Department of Pediatric SurgeryHannover Medical SchoolHanoverGermany
  2. 2.Department of AnesthesiologyHannover Medical SchoolHanoverGermany
  3. 3.Department of Pediatric SurgeryMedical University of ViennaViennaAustria

Personalised recommendations