Advertisement

Surgical Endoscopy

, Volume 32, Issue 6, pp 2583–2602 | Cite as

The SAGES Fundamental Use of Surgical Energy program (FUSE): history, development, and purpose

  • P. Fuchshuber
  • S. Schwaitzberg
  • D. Jones
  • S. B. Jones
  • L. Feldman
  • M. Munro
  • T. Robinson
  • G. Purcell-Jackson
  • D. Mikami
  • A. Madani
  • M. Brunt
  • B. Dunkin
  • C. Gugliemi
  • L. Groah
  • R. Lim
  • J. Mischna
  • C. R. Voyles
SAGES FUSE PROGRAM

Abstract

Background

Adverse events due to energy device use in surgical operating rooms are a daily occurrence. These occur at a rate of approximately 1–2 per 1000 operations. Hundreds of operating room fires occur each year in the United States, some causing severe injury and even mortality. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) therefore created the first comprehensive educational curriculum on the safe use of surgical energy devices, called Fundamental Use of Surgical Energy (FUSE). This paper describes the history, development, and purpose of this important training program for all members of the operating room team.

Methods

The databases of SAGES and the FUSE committee as well as personal photographs and documents of members of the FUSE task force were used to establish a brief history of the FUSE program from its inception to its current status.

Results

The authors were able to detail all aspects of the history, development, and national as well as global implementation of the third SAGES Fundamentals Program FUSE.

Conclusions

The written documentation of the making of FUSE is an important contribution to the history and mission of SAGES and allows the reader to understand the idea, concept, realization, and implementation of the only free online educational tool for physicians on energy devices available today. FUSE is the culmination of the SAGES efforts to recognize gaps in patient safety and develop state-of-the-art educational programs to address those gaps. It is the goal of the FUSE task force to ensure that general FUSE implementation becomes multinational, involving as many countries as possible.

Keywords

Energy device Electrosurgery Operating room Surgical education Patient safety Curriculum 

Notes

Acknowledgements

The authors acknowledge Dr. Marc Allen Rozner, PhD, MD (1952–2017), who was a significant contributor and leader to the FUSE program before his death in January 2017. He will be remembered as a brilliant innovator in translating complex electrophysiological processes into easily understood concepts for the practicing health care provider.

References

  1. 1.
    Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S (2013) Common uses and cited complications of energy in surgery. Surg Endosc 27(9):3056–3072CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schwaitzberg SD (2012) Evolution and revolutions in surgical energy. In: Feldman LS, Fuchshuber P, Jones DB (eds) The Fundamental Use of Surgical Energy (FUSE) manual. Springer, New York, p 3CrossRefGoogle Scholar
  3. 3.
    Feldman LS, Brunt LM, Fuchshuber P et al (2013) Rationale for the fundamental use of surgical Energy (FUSE) curriculum assessment: focus on safety. Surg Endosc 27(11):4054–4059CrossRefPubMedGoogle Scholar
  4. 4.
    Feldman LS, Fuchshuber P, Jones DB, Mischna J, Schwaitzberg SD (2012) FUSE (Fundamental Use of Surgical Energy) Task Force. Surgeons don’t know what they don’t know about the safe use of energy in surgery. Surg Endosc 26(10):2735–2739CrossRefPubMedGoogle Scholar
  5. 5.
    Fuchshuber PR, Robinson TN, Feldman LS, Jones DB, Schwaitzberg SD (2014 Sep) The SAGES FUSE program: bridging a patient safety gap. Bull Am Coll Surg 99(9):18–27PubMedGoogle Scholar
  6. 6.
    Fuchshuber P, Jones S, Jones D, Feldman LS, Schwaitzberg S, Rozner MA (2013) Ensuring safety in the operating room: the “fundamental use of surgical energy” (FUSE) program. Int Anesthesiol Clin 51(4):65–80CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Feldman LS, Fuchshuber P, Jones DB (eds) (2012) The Fundamental Use of Surgical Energy (FUSE) manual. Springer, New YorkGoogle Scholar
  8. 8.
    Madani A, Jones DB, Fuchshuber P, Robinson TN, Feldman LS (2014) Fundamental Use of Surgical Energy™ (FUSE): a curriculum on surgical energy-based devices. Surg Endosc 28(9):2509–2512CrossRefPubMedGoogle Scholar
  9. 9.
    Robinson TN, Olasky J, Young P, Feldman LS, Fuchshuber PR, Jones SB, Madani A, Brunt M, Mikami D, Jackson GP, Mischna J, Schwaitzberg S, Jones DB (2016 Mar) Fundamental Use of Surgical Energy (FUSE) certification: validation and predictors of success. Surg Endosc 30(3):916–924CrossRefPubMedGoogle Scholar
  10. 10.
    Madani A, Watanabe Y, Vassiliou MC et al (2014) Impact of a hands-on component on learning in the Fundamental Use of Surgical Energy (FUSE) curriculum: a randomized-controlled trial in surgical trainees. Surg Endosc 28:2772–2782CrossRefPubMedGoogle Scholar
  11. 11.
    Madani A, Watanabe Y, Townsend N, Pucher PH, Robinson TN, Egerszegi PE, Olasky J, Bachman SL, Park CW, Amin N, Tang DT, Haase E, Bardana D, Jones DB, Vassiliou M, Fried GM, Feldman LS (2016 Feb) Structured simulation improves learning of the Fundamental Use of Surgical Energy™ curriculum: a multicenter randomized controlled trial. Surg Endosc 30(2):684–691CrossRefPubMedGoogle Scholar
  12. 12.
    Madani A, Watanabe Y, Vassiliou MC, Fuchshuber P, Jones DB, Schwaitzberg SD, Fried GM, Feldman LS (2016) Long-term knowledge retention following simulation-based training for electrosurgical safety: 1-year follow-up of a randomized controlled trial. Surg Endosc 30(3):1156–1163CrossRefPubMedGoogle Scholar
  13. 13.
    Allen BF, Schwaitzberg SD, Jones DB, De S (2014) Toward the development of a virtual electrosurgery training simulator. Stud Health Technol Inform 196:11–13PubMedGoogle Scholar
  14. 14.
    Dorozhkin D, Olasky J, Jones DB, Schwaitzberg SD, Jones SB, Cao CG, Molina M, Henriques S, Wang J, Flinn J, De S, SAGES FUSE Committee (2016) OR fire virtual training simulator: design and face validity. Surg Endosc 31:3527–3533CrossRefPubMedGoogle Scholar
  15. 15.
    Sankaranarayanan G, Li B, Miller A, Wakily H, Jones SB, Schwaitzberg S, Jones DB, De S, Olasky J (2016) Face validation of the Virtual Electrosurgery Skill Trainer (VEST©). Surg Endosc 30(2):730–738CrossRefPubMedGoogle Scholar
  16. 16.
    Allen BF, Jones DB, Schwaitzberg SD, Suvranu D (2014 Apr) Survey-based analysis of fundamental tasks for effective use of electrosurgical instruments. Surg Endosc 28(4):1166–1172CrossRefPubMedGoogle Scholar
  17. 17.
    Townsend NT, Jones EL, Overbey D, Dunne B, McHenry J, Robinson TN (2017) Single-incision laparoscopic surgery increases the risk of unintentional thermal injury from the monopolar “Bovie” instrument in comparison with traditional laparoscopy. Surg Endosc 31:3146–3151CrossRefPubMedGoogle Scholar
  18. 18.
    Jones EL, Madani A, Overbey DM, Kiourti A, Bojja-Venkatakrishnan S, Mikami DJ, Hazey JW, Arcomano TR, Robinson TN (2017) Stray energy transfer during endoscopy. Surg Endosc. doi: 10.1007/s00464-017-5427-y CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Townsend NT, Nadlonek NA, Jones EL, McHenry JR, Dunne B, Stiegmann GV, Robinson TN (2016) Unintended stray energy from monopolar instruments: beware the dispersive electrode cord. Surg Endosc 30:1333–1336CrossRefPubMedGoogle Scholar
  20. 20.
    Townsend NT, Jones EL, Paniccia A, Vandervelde J, McHenry JR, Robinson TN (2015) Antenna coupling explains unintended thermal injury caused by common operating room monitoring devices. Surg Laparosc Endosc Percutan Tech 25:111–113CrossRefPubMedGoogle Scholar
  21. 21.
    Robinson TN, Jones EL, Dunn CL, Dunne B, Johnson E, Townsend NT, Paniccia A, Stiegmann GV (2015) Separating the laparoscopic camera cord from the monopolar “Bovie” cord reduces unintended thermal injury from antenna coupling: a randomized controlled trial. Ann Surg 261:1056–1060CrossRefPubMedGoogle Scholar
  22. 22.
    Robinson TN, Varosy PD, Guillaume G, Dunning JE, Townsend NT, Jones EL, Paniccia A, Stiegmann GV, Weyer C, Rozner MA (2014) Effect of radiofrequency energy emitted from monopolar “Bovie” instruments on cardiac implantable electronic devices. J Am Coll Surg 219:399–406CrossRefPubMedGoogle Scholar
  23. 23.
    Paniccia A, Rozner M, Jones EL, Townsend NT, Varosy PD, Dunning JE, Girard G, Weyer C, Stiegmann GV, Robinson TN (2014) Electromagnetic interference caused by common surgical energy-based devices on an implanted cardiac defibrillator. Am J Surg 208:932–936 (discussion 935–6)CrossRefPubMedGoogle Scholar
  24. 24.
    Jones EL, Dunn CL, Townsend NT, Jones TS, Bruce Dunne J, Montero PN, Govekar HR, Stiegmann GV, Robinson TN (2013) Blend mode reduces unintended thermal injury by laparoscopic monopolar instruments: a randomized controlled trial. Surg Endosc 27:4016–4020CrossRefPubMedGoogle Scholar
  25. 25.
    Govekar HR, Robinson TN, Varosy PD, Girard G, Montero PN, Dunn CL, Jones EL, Stiegmann GV (2012) Effect of monopolar radiofrequency energy on pacemaker function. Surg Endosc 26:2784–2788CrossRefPubMedGoogle Scholar
  26. 26.
    Jones EL, Robinson TN, McHenry JR, Dunn CL, Montero PN, Govekar HR, Stiegmann GV (2012) Radiofrequency energy antenna coupling to common laparoscopic instruments: practical implications. Surg Endosc 26:3053–3057CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson TN, Barnes KS, Govekar HR, Stiegmann GV, Dunn CL, McGreevy FT (2012) Antenna coupling–a novel mechanism of radiofrequency electrosurgery complication: practical implications. Ann Surg 256:213–218CrossRefPubMedGoogle Scholar
  28. 28.
    Montero PN, Robinson TN, Weaver JS, Stiegmann GV (2010) Insulation failure in laparoscopic instruments. Surg Endosc 24:462–465CrossRefPubMedGoogle Scholar
  29. 29.
    Robinson TN, Pavlovsky KR, Looney H, Stiegmann GV, McGreevy FT (2010) Surgeon-controlled factors that reduce monopolar electrosurgery capacitive coupling during laparoscopy. Surg Laparosc Endosc Percutan Tech 20:317–320CrossRefPubMedGoogle Scholar
  30. 30.
    Jones EL, Overbey DM, Chapman BC, Jones TS, Hilton SA, Moore JT, Robinson TN (2017) Operating room fires and surgical skin preparation. J Am Coll Surg 225(1):160–165CrossRefPubMedGoogle Scholar
  31. 31.
    Jones EL, Dunn CL, Townsend NT, Jones TS, Bruce Dunne J, Montero PN, Govekar HR, Stiegmann GV, Robinson TN (2013) Blend mode reduces unintended thermal injury by laparoscopic monopolar instruments: a randomized controlled trial. Surg Endosc 27(11):4016–4020CrossRefPubMedGoogle Scholar
  32. 32.
    Govekar HR, Robinson TN, Stiegmann GV, McGreevy FT (2011) Residual heat of laparoscopic energy devices: how long must the surgeon wait to touch additional tissue? Surg Endosc 25(11):3499–3502CrossRefPubMedGoogle Scholar
  33. 33.
    Robinson TN, Pavlovsky KR, Looney H, Stiegmann GV, McGreevy FT (2010) Surgeon-controlled factors that reduce monopolar electrosurgery capacitive coupling during laparoscopy. Surg Laparosc Endosc Percutan Tech 20(5):317–320CrossRefPubMedGoogle Scholar
  34. 34.
    Ulmer BC (2016) What is your energy IQ? FUSE: bridging a patient safety gap. AORN J 103(3):333–337CrossRefPubMedGoogle Scholar
  35. 35.
    Jones DB, Brunt LM, Feldman LS, Mikami DJ, Robinson TN (2015) Jones SB Safe energy use in the operating room. Curr Probl Surg 52(11):447–468CrossRefPubMedGoogle Scholar
  36. 36.
    Jones SB, Munro MG, Feldman LS, Robinson TN, Brunt LM, Schwaitzberg SD, Jones DB, Fuchshuber PR (2017) Fundamental Use of Surgical Energy (FUSE): an essential educational program for operating room safety. Perm J 21:34–45Google Scholar
  37. 37.
    Fuchshuber PR, Robinson TN, Feldman LS, Brunt LM, Madani A, Jones SB, Rozner MA, Munro MG, Mishna J, Schwaitzberg SD, Jones DB (2015) Fundamental Use of Surgical Energy (FUSE): closing a gap in medical education. Ann Surg 262(1):20–22CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fuchshuber P (2017) Das SAGES FUSE, Programm: Ein Ansatz zur Vermeidung von Komplikationen im OP. Chirurgen Magazin 84:46–49Google Scholar
  39. 39.
    Fuchshuber PR, Schwaitzberg SD, Rabrenovich V, Feldman LS, Jones DB (2014) Brief update on surgical safety and outcomes: NSQIP and FUSE. E-memoirs Natl Acad Surg 13(4):064–069Google Scholar
  40. 40.
    Voyles CR, Tucker RD (1992) Education and engineering solutions for potential problems with laparoscopic monopolar electrosurgery. Am J Surg 164(1):57–62CrossRefPubMedGoogle Scholar
  41. 41.
    Tucker RD, Voyles CR (1995) Laparoscopic electrosurgical complications and their prevention. AORN J 62(1):51–59CrossRefPubMedGoogle Scholar
  42. 42.
    Munro MG (2013) Economics and energy sources. J Minim Invasive Gynecol 20(3):319–327CrossRefPubMedGoogle Scholar
  43. 43.
    Munro MG (2012) Electrosurgery research. Am J Obstet Gynecol 206(6):e6–e8 (author reply e7–e8)CrossRefPubMedGoogle Scholar

Copyright information

© Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) 2017

Authors and Affiliations

  • P. Fuchshuber
    • 1
  • S. Schwaitzberg
    • 2
  • D. Jones
    • 3
    • 4
    • 5
    • 6
  • S. B. Jones
    • 7
    • 8
  • L. Feldman
    • 9
  • M. Munro
    • 10
  • T. Robinson
    • 11
  • G. Purcell-Jackson
    • 12
  • D. Mikami
    • 13
  • A. Madani
    • 14
  • M. Brunt
    • 15
  • B. Dunkin
    • 16
  • C. Gugliemi
    • 17
  • L. Groah
    • 18
  • R. Lim
    • 19
  • J. Mischna
    • 20
  • C. R. Voyles
    • 21
  1. 1.Department of Surgery, Kaiser Walnut Creek Medical CenterThe Permanente Medical Group, Inc.Walnut CreekUSA
  2. 2.Department of Surgery, Jacobs School of Medicine and Biomedical SciencesThe State University of New York, Buffalo General HospitalBuffaloUSA
  3. 3.Harvard Medical SchoolBostonUSA
  4. 4.Office of Technology and InnovationBostonUSA
  5. 5.Division of Minimally Invasive Surgical ServicesBostonUSA
  6. 6.Beth Israel Deaconess Medical CenterBostonUSA
  7. 7.Department of AnesthesiologyHarvard Medical SchoolBostonUSA
  8. 8.Department of Anesthesia/Crit Care/PainBIDMCBostonUSA
  9. 9.Department of SurgeryMcGill University Health CentreMontrealCanada
  10. 10.Department of Obstetrics & GynecologyDavid Geffen School of Medicine at UCLA and Kaiser Permanenete Los Angeles Medical CenterLos AngelesUSA
  11. 11.Rocky Mountain VA Medical CenterUniversity of ColoradoAuroraUSA
  12. 12.Vanderbilt University Medical CenterNashvilleUSA
  13. 13.John A. Burn School of MedicineUniversity of HawaiiHonoluluUSA
  14. 14.Department of SurgeryMcGill UniversityMontrealCanada
  15. 15.Washington University School of MedicineSt. LouisUSA
  16. 16.Houston Methodist Institute for Technology, Innovation & Education, Institute for Academic MedicineHouston Methodist, Weill Cornell Medical CollegeHoustonUSA
  17. 17.Beth Israel Deaconess Medical CenterBostonUSA
  18. 18.AORNDenverUSA
  19. 19.Uniformed Services University of Health Sciences, Tripler Army Medical CenterHonoluluUSA
  20. 20.Fundamentals Department SAGESLos AngelesUSA
  21. 21.JacksonUSA

Personalised recommendations