Skip to main content

Advertisement

Log in

Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

Research has clearly shown the benefits of surgical simulators to train laparoscopic motor skills required for positive patient outcomes. We have developed the Virtual Basic Laparoscopic Skill Trainer (VBLaST) that simulates tasks from the Fundamentals of Laparoscopic Surgery (FLS) curriculum. This study aims to show convergent validity of the VBLaST pattern cutting module via the CUSUM method to quantify learning curves along with motor skill transfer from simulation environments to ex vivo tissue samples.

Methods

18 medical students at the University at Buffalo, with no prior laparoscopic surgical skills, were placed into the control, FLS training, or VBLaST training groups. Each training group performed pattern cutting trials for 12 consecutive days on their respective simulation trainers. Following a 2-week break period, the trained students performed three pattern cutting trials on each simulation platform to measure skill retention. All subjects then performed one pattern cutting task on ex vivo cadaveric peritoneal tissue. FLS and VBLaST pattern cutting scores, CUSUM scores, and transfer task completion times were reported.

Results

Results indicate that the FLS and VBLaST trained groups have significantly higher task performance scores than the control group in both the VBLaST and FLS environments (p < 0.05). Learning curve results indicate that three out of seven FLS training subjects and four out of six VBLaST training subjects achieved the “senior” performance level. Furthermore, both the FLS and VBLaST trained groups had significantly lower transfer task completion times on ex vivo peritoneal tissue models (p < 0.05).

Conclusion

We characterized task performance scores for trained VBLaST and FLS subjects via CUSUM analysis of the learning curves and showed evidence that both groups have significant improvements in surgical motor skill. Furthermore, we showed that learned surgical skills in the FLS and VBLaST environments transfer not only to the different simulation environments, but also to ex vivo tissue models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darzi A, Smith S, Taffinder N (1999) Assessing operative skill. Needs to become more objective. BMJ 318:887–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wanzel KR, Hamstra SJ, Anastakis DJ, Matsumoto ED, Cusimano MD (2002) Effect of visual-spatial ability on learning of spatially-complex surgical skills. Lancet 359:230–231. doi:10.1016/S0140-6736(02)07441-X

    Article  PubMed  Google Scholar 

  3. Aggarwal R, Grantcharov T, Moorthy K, Milland T, Papasavas P, Dosis A, Bello F, Darzi A (2007) An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Ann Surg 245:992–999. doi:10.1097/01.sla.0000262780.17950.e5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré K, Stanbridge D, Fried GM (2005) A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 190:107–113. doi:10.1016/j.amjsurg.2005.04.004

    Article  PubMed  Google Scholar 

  5. Doyle JD, Webber EM, Sidhu RS (2007) A universal global rating scale for the evaluation of technical skills in the operating room. Am J Surg 193:551–555. doi:10.1016/j.amjsurg.2007.02.003

    Article  PubMed  Google Scholar 

  6. Martin JA, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84:273–278. doi:10.1046/j.1365-2168.1997.02502.x

    Article  CAS  PubMed  Google Scholar 

  7. Hogle NJ, Chang L, Strong VEM, Welcome AOU, Sinaan M, Bailey R, Fowler DL (2009) Validation of laparoscopic surgical skills training outside the operating room: a long road. Surg Endosc 23:1476–1482. doi:10.1007/s00464-009-0379-5

    Article  CAS  PubMed  Google Scholar 

  8. Moorthy K, Munz Y (2003) Objective assessment of technical skills in surgery. Br Med J 327:1032–1037. doi:10.1136/bmj.327.7422.1032

    Article  Google Scholar 

  9. Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM (2003) Evaluating laparoscopic skills: setting the pass/fail score for the MISTELS system. Surg Endosc 17:964–967. doi:10.1007/s00464-002-8828-4

    Article  CAS  PubMed  Google Scholar 

  10. Soper NJ, Fried GM (2008) The fundamentals of laparoscopic surgery: its time has come. Bull Am Coll Surg 93:30–32

    PubMed  Google Scholar 

  11. Peters JH, Fried GM, Swanstrom LL, Soper NJ, Sillin LF, Schirmer B, Hoffman K (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135:21–27. doi:10.1016/S0039-6060(03)00156-9

    Article  PubMed  Google Scholar 

  12. Fried GM (2008) FLS assessment of competency using simulated laparoscopic tasks. J Gastrointest Surg 12:210–212. doi:10.1007/s11605-007-0355-0

    Article  PubMed  Google Scholar 

  13. Feldman LS, Sherman V, Fried GM (2004) Using simulators to assess laparoscopic competence: ready for widespread use? Special section: competency-when, why, how? Surgery 135:28–42

    Article  PubMed  Google Scholar 

  14. Feldman LS, Hagarty SE, Ghitulescu G, Stanbridge D, Fried GM (2004) Relationship between objective assessment of technical skills and subjective in-training evaluations in surgical residents. J Am Coll Surg 198:105–110. doi:10.1016/j.jamcollsurg.2003.08.020

    Article  PubMed  Google Scholar 

  15. Fried GM, Feldman LS, Vassiliou MC, Fraser SA, Stanbridge D, Ghitulescu G, Andrew CG (2004) Proving the value of simulation in laparoscopic surgery. Ann Surg 240:518–525. doi:10.1097/01.SLA.0000136941.46529.56

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vassiliou MC, Ghitulescu GA, Feldman LS, Stanbridge D, Leffondré K, Sigman HH, Fried GM (2006) The MISTELS program to measure technical skill in laparoscopic surgery: evidence for reliability. Surg Endosc 20:744–747. doi:10.1007/s00464-005-3008-y

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Sankaranarayanan G, Arikatla VS, Ahn W, Grosdemouge C, Rideout JM, Epstein SK, De S, Schwaitzberg SD, Jones DB, Cao CGL (2013) Characterizing the learning curve of the VBLaST-PT© (Virtual Basic Laparoscopic Skill Trainer). Surg Endosc 27:3603–3615. doi:10.1007/s00464-013-2932-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236:458–463. doi:10.1097/01.SLA.0000028969.51489.B4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, Smith CD, Satava RM (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241:364–372

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maciel A, Liu Y, Ahn W, Singh TP, Dunnican W, De S (2008) Development of the VBLaST™: a virtual basic laparoscopic skill trainer. Int J Med Robot Comput Assist Surg 4:131–138. doi:10.1002/rcs.185

    Article  Google Scholar 

  21. Arikatla VS, Sankaranarayanan G, Ahn W, Chellali A, De S, Caroline GL, Hwabejire J, DeMoya M, Schwaitzberg S, Jones DB (2013) Face and construct validation of a virtual peg transfer simulator. Surg Endosc 27:1721–1729. doi:10.1007/s00464-012-2664-y

    Article  PubMed  Google Scholar 

  22. Sankaranarayanan G, Lin H, Arikatla VS, Mulcare M, Zhang L, Derevianko A, Lim R, Fobert D, Cao C, Schwaitzberg SD, Jones DB, De S (2010) Preliminary face and construct validation study of a virtual basic laparoscopic skill trainer. J Laparoendosc Adv Surg Tech A 20:153–157. doi:10.1089/lap.2009.0030

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chellali A, Ahn W, Sankaranarayanan G, Flinn JT, Schwaitzberg SD, Jones DB, De S, Cao CGL (2015) Preliminary evaluation of the pattern cutting and the ligating loop virtual laparoscopic trainers. Surg Endosc 29:815–821. doi:10.1007/s00464-014-3764-7

    Article  CAS  PubMed  Google Scholar 

  24. Williams SM, Parry BR, Schlup MM (1992) Quality control: an application of the CUSUM. BMJ 304:1359–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biau DJ, Resche-Rigon M, Godiris-Petit G, Nizard RS, Porcher R (2007) Quality control of surgical and interventional procedures: a review of the CUSUM. Qual Saf Health Care 16:203–207. doi:10.1136/qshc.2006.020776

    Article  PubMed  PubMed Central  Google Scholar 

  26. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. doi:10.3758/BF03193146

    Article  PubMed  Google Scholar 

  27. Fraser SA, Feldman LS, Stanbridge D, Fried GM (2005) Characterizing the learning curve for a basic laparoscopic drill. Surg Endosc 19:1572–1578. doi:10.1007/s00464-005-0150-5

    Article  CAS  PubMed  Google Scholar 

  28. Bartlett A, Parry B (2001) CUSUM analysis of trends in operative selection and conversion rates for laparoscopic cholecystectomy. ANZ J Surg 71:453–456. doi:10.1046/j.1440-1622.2001.02163.x

    Article  CAS  PubMed  Google Scholar 

  29. Kye B-H, Kim J-G, Cho H-M, Kim H-J, Suh Y-J, Chun C-S (2011) Learning curves in laparoscopic right-sided colon cancer surgery: a comparison of first-generation colorectal surgeon to advance laparoscopically trained surgeon. J Laparoendosc Adv Surg Tech 21:789–796. doi:10.1089/lap.2011.0086

    Article  Google Scholar 

  30. Okrainec A, Ferri LE, Feldman LS, Fried GM (2011) Defining the learning curve in laparoscopic paraesophageal hernia repair: a CUSUM analysis. Surg Endosc 25:1083–1087. doi:10.1007/s00464-010-1321-6

    Article  PubMed  Google Scholar 

  31. Hyltander A, Liljegren E, Rhodin PH, Lönroth H (2002) The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surg Endosc 16:1324–1328. doi:10.1007/s00464-001-9184-5

    Article  CAS  PubMed  Google Scholar 

  32. Korndorffer JR, Dunne JB, Sierra R, Stefanidis D, Touchard CL, Scott DJ (2005) Simulator training for laparoscopic suturing using performance goals translates to the operating room. J Am Coll Surg 201:23–29. doi:10.1016/j.jamcollsurg.2005.02.021

    Article  PubMed  Google Scholar 

  33. McCluney AL, Vassiliou MC, Kaneva PA, Cao J, Stanbridge DD, Feldman LS, Fried GM (2007) FLS simulator performance predicts intraoperative laparoscopic skill. Surg Endosc 21:1991–1995. doi:10.1007/s00464-007-9451-1

    Article  CAS  PubMed  Google Scholar 

  34. Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM (2010) Fundamentals of Laparoscopic Surgery simulator training to proficiency improves laparoscopic performance in the operating room—a randomized controlled trial. Am J Surg 199:115–120. doi:10.1016/j.amjsurg.2009.07.035

    Article  PubMed  Google Scholar 

  35. Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53:399–413. doi:10.1109/TBME.2005.869771

    Article  PubMed  Google Scholar 

  36. Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11:220–230. doi:10.3109/10929080600989189

    Article  PubMed  Google Scholar 

  37. Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang G-Z (2011) Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54:2922–2936. doi:10.1016/j.neuroimage.2010.10.058

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NIBIB 1R01EB014305, NHLBI 1R01HL119248, and NCI 1R01CA197491 Grants awarded to Suvranu De. The authors would like to thank the medical student subjects and their dedication for this study. The authors would also like to thank the anatomical gift program and the gross anatomy lab at University of Buffalo for their support regarding the ex vivo cadaveric samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvranu De.

Ethics declarations

Disclosures

Drs. Arun Nemani, Woojin Ahn, Clairice Cooper, Steven Schwaitzberg, and Suvranu De have no conflict of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemani, A., Ahn, W., Cooper, C. et al. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator. Surg Endosc 32, 1265–1272 (2018). https://doi.org/10.1007/s00464-017-5802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-017-5802-8

Keywords

Navigation