Surgical Endoscopy

, Volume 31, Issue 10, pp 3801–3810 | Cite as

SAGES Technology and Value Assessment Committee safety and effectiveness analysis on immunofluorescence in the operating room for biliary visualization and perfusion assessment

  • Bryan J. Sandler
  • Danny Sherwinter
  • Lucian Panait
  • Richard Parent
  • Jennifer Schwartz
  • David RentonEmail author
SAGES Committee Report

The ability to assess tissue perfusion and identify vital structures in the operating room in order to potentially decrease complication rates remains a key goal for surgeons. The introduction of immunofluorescence utilizing indocyanine green intraoperatively to evaluate areas such as an anastomosis, a free flap, biliary anatomy, or lymphatics has the possibility of decreasing postoperative complications by addressing identification and perfusion concerns at the time of surgery.

The use of laser-induced immunofluorescence using indocyanine green relies on similar principles as fluorescein technique, which was first proposed in 1942. Fluorescein angiography was initially used to evaluate vascularity of the eye and skin. Fluorescein angiography did not become clinically significant, however, due to difficulties with the tracer. Indocyanine green, a second-generation tracer, was developed in order to overcome the limitations of fluorescein. Indocyanine green (ICG) is a water-soluble...


Compliance with ethical standards


Bryan J Sandler reports Consulting Fee for ValenTx, Inc, and Honoraria for Gore and Bard-Davol; Danny Sherwinter reports IP Rights for Novadaq and Research for Navidea; Lucian Panait, Richard Parent, Jennifer Schwartz, and David Renton have no conflict of interest or financial ties to disclose.


  1. 1.
    Cherrick GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    DeLong JC, Hoffman RM, Bouvet M (2016) Current Status and Future Perspectives of Fluorescence-Guided Surgery for Cancer. Expert Rev Anticancer Ther 16(1):71–81CrossRefPubMedGoogle Scholar
  3. 3.
    Ando N, Ozawa S, Kitagawa Y, Shinozawa Y, Kitajima M (2000) Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg 232:225–232CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tachimori Y, Kanamori N, Uemura N, Hokamura N, Igaki H, Kato H (2009) Salvage esophagectomy after high-dose chemoradiotherapy for esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg 137:49–54CrossRefPubMedGoogle Scholar
  5. 5.
    Lee Y, Fujita H, Yamana H, Kakegawa T (1994) Factors affecting leakage following esophageal anastomosis. Surg Today 24:24–29CrossRefPubMedGoogle Scholar
  6. 6.
    Sarela AI, Tolan DJ, Harris K, Dexter SP, Sue-Ling HM (2008) Anastomotic leakage after esophagectomy for cancer: a mortality-free experience. J Am Coll Surg 206:516–523CrossRefPubMedGoogle Scholar
  7. 7.
    Korst R, Port JL, Lee PC, Altorki NK (2005) Intrathoracic manifestations of cervical anastomotic leaks after transthoracic esophagectomy for carcinoma. Ann Thorac Surg 80:1185–1190CrossRefPubMedGoogle Scholar
  8. 8.
    Atkins BZ, Shah AS, Hutcheson KA, Mangum JH, Pappas TN, Harpole DH et al (2004) Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg 78:1170–1176CrossRefPubMedGoogle Scholar
  9. 9.
    Udagawa H, Akiyama H (2001) Surgical treatment of esophageal cancer: Tokyo experience of the three-field technique. Dis Esophagus 14:110–114CrossRefPubMedGoogle Scholar
  10. 10.
    Nederlof N, Tilanus HW, Tran TK, Hop WC, Wijnhoven BP, de Jonge J (2011) End-to-end versus end-to-side esophagogastrostomy after esophageal cancer resection: a prospective randomized study. Ann Surg 254:26–33CrossRefGoogle Scholar
  11. 11.
    Lindgren R, Hallbook O, Rutegard J, Sjodahl R, Matthiessen P (2011) What is the risk for a permanent stoma after low anterior resection of the rectum for cancer? A six-year follow-up of a multicenter trial. Dis Colon Rectum 54:41–47CrossRefPubMedGoogle Scholar
  12. 12.
    Kingham TP, Pachter HL (2009) Colonic anastomotic leak: risk factors, diagnosis, and treatment. J Am Coll Surg 208:269–278CrossRefPubMedGoogle Scholar
  13. 13.
    Reavis K (2009) The esophageal anastomosis: how improving blood supply affects leak rate. J Gastrointest Surg 13:1558–1560CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Markus PM, Martell J, Leister I, Horstmann O, Brinker J, Becker H (2005) Predicting postoperative morbidity by clinical assessment. Br J Surg 92:101–106CrossRefPubMedGoogle Scholar
  15. 15.
    Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM (2009) Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 24:569–576CrossRefPubMedGoogle Scholar
  16. 16.
    Kudszus S, Roesel C, Schachtrupp A, Höer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a non invasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 395(8):1025–1030CrossRefPubMedGoogle Scholar
  17. 17.
    Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, Pigazzi A (2013) The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 27:3003–3008CrossRefPubMedGoogle Scholar
  18. 18.
    Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA (2014) The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc 28:1695–702CrossRefPubMedGoogle Scholar
  19. 19.
    Foppa C, Denoya PI, Tarta C, Bergamaschi R (2014) Indocyanine green fluorescent dye during bowel surgery: are the blood supply “guessing days” over? Tech Coloproctol 18(8):753–758CrossRefPubMedGoogle Scholar
  20. 20.
    Ris F, Hompes R, Cunningham C, Lindsey I, Guy R, Jones O, George B, Cahill RA, Mortensen NJ (2014) Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc 28(7):2221–2226CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guillou PJ, Quirke P, Thorpe H et al (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365:1718–1726CrossRefPubMedGoogle Scholar
  22. 22.
    Senagore A, Lee EC, Wexner SD et al (2014) Bioabsorbable staple line reinforcement in restorative proctectomy and anterior resection: a prospective randomized study. Dis Colon Rectum 57:324–330CrossRefPubMedGoogle Scholar
  23. 23.
    Pigazzi A, Luca F, Patriti A et al (2010) Multicentric study on robotic tumor-specific mesorectal excision for the treatment of rectal cancer. Ann Surg Oncol 17:1614–1620CrossRefPubMedGoogle Scholar
  24. 24.
    Sauer R, Fietkau R, Wittekind C et al (2003) Adjuvant vs. neoadjuvant radiochemotherapy for locally advanced rectal cancer: the German trial CAO/ARO/AIO-94. Colorectal Dis 5:406–415CrossRefPubMedGoogle Scholar
  25. 25.
    Boni L, David G, Mangano A, Dionigi G, Rausei S, Spampatti S, Cassinotti E, Fingerhut A (2015) Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 29(7):2046–2055CrossRefPubMedGoogle Scholar
  26. 26.
    Watanabe J, Ota M, Suwa Y, Suzuki S, Suwa H, Momiyama M, Ishibe A, Watanabe K, Masui H, Nagahori K, Ichikawa Y, Endo I (2015) Evaluation of the intestinal blood flow near the rectosigmoid junction using the indocyanine green fluorescence method in a colorectal cancer surgery. Int J Colorectal Dis 30(3):329–335CrossRefPubMedGoogle Scholar
  27. 27.
    Gröne J, Koch D, Kreis ME (2015) Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses. Colorectal Dis 17(Suppl 3):22–28CrossRefPubMedGoogle Scholar
  28. 28.
    Protyniak B, Dinallo AM, Boyan WP Jr, Dressner RM, Arvanitis ML (2015) Intraoperative indocyanine green fluorescence angiography–an objective evaluation of anastomotic perfusion in colorectal surgery. Am Surg 81(6):580–584PubMedGoogle Scholar
  29. 29.
    Kin C, Vo H, Welton L, Welton M (2015) Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks. Dis Colon Rectum 58(6):582–587CrossRefPubMedGoogle Scholar
  30. 30.
    Pacheco PE, Hill SM, Henriques SM, Paulsen JK, Anderson RC (2013) The novel use of intraoperative laser-induced fluorescence of indocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructive surgery. Am J Surg 205(3):349–352CrossRefPubMedGoogle Scholar
  31. 31.
    Yukaya et al (2015) Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. JACS 221:37–42Google Scholar
  32. 32.
    Shimada et al (2011) Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy. Esophagus 8:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zehetner J, DeMeester SR, Alicuben ET, Oh DS, Lipham JC, Hagen JA, DeMeester TR (2015) Intraoperative assessment of perfusion of the gastric graft and correlation with anastomotic leaks after esophagectomy. Ann Surg 262(1):74–78CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Flum DR, Cheadle A, Prela C, Dellinger EP, Chan L (2003) Bile duct injury during Laparoscopic cholecystectomy and survival in medicare beneficiaries. J Am Med Assoc 290(2):2168–2173CrossRefGoogle Scholar
  35. 35.
    Nuzzo G, Giuliante F, Giovannini I, Ardito F, D’Acapito F, Vellone M, Murazio M, Bile Capelli G (2005) Duct injury during laparoscopic cholecystectomy: results of an Italian national survey on 56,591 cholecystectomies. Arch Surg 140:986–992CrossRefPubMedGoogle Scholar
  36. 36.
    Waage A, Nilsson M (2006) Iatrogenic bile duct injury: a population-based Study of 152,776 cholecystectomies in the swedish inpatient registry. Arch Surg 141:1207–1213CrossRefPubMedGoogle Scholar
  37. 37.
    Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T (2003) Intraoperative cholangiogram and risk of common bile duct injury during cholecystectomy. J Am Med Assoc 289:1639–1644CrossRefGoogle Scholar
  38. 38.
    Schwaitzberg SD, Scott DJ, Jones DB, McKinley SK, Castrillion J, Hunter TD, Brunt LM (2014) Threefold Increased bile duct injury rate is associated with less surgeon experience in an insurance claims database. Surg Endosc 28:3068–3073CrossRefPubMedGoogle Scholar
  39. 39.
    Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, Beck Y, Kokudo N (2008) Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg 208:e1–e4CrossRefPubMedGoogle Scholar
  40. 40.
    Ishizawa T, Bandai Y, Kokudo N (2009) Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg 144:381–382CrossRefPubMedGoogle Scholar
  41. 41.
    Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 940585:1–26CrossRefGoogle Scholar
  42. 42.
    Kaneko J, Ishizawa T, Masuda K, Kawaguchi Y, Aoki T, Sakamoto Y, Hasegawa K, Sugawara Y, Kokudo N (2012) Indocyanine green re-injection technique for use in fluorescent angiography concomitant with cholangiography during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech 22(4):341–344CrossRefPubMedGoogle Scholar
  43. 43.
    Kono Y, Ishizawa T, Tani K, Harada N, Kaneko J, Saiura A, Bandai Y, Kokudo N (2015) Techniques of fluorescence cholangiography during laparoscopic cholecystectomy for better delineation of the bile duct anatomy. Medicine. 94(25):e1005CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Osayi SN, Wendling MR, Drosdeck JM, Chaudhry UI, Perry KA, Noria SF, Mikami DJ, Needleman BJ, Muscarella P, Abdel-Rasoul M, Renton DB (2015) Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy. Surg Endosc 29:368–375CrossRefPubMedGoogle Scholar
  45. 45.
    van Dam DA, Ankersmit M, van de Ven P, van Rijswijk AS, Tuynman JB, Meijerink WJ (2015) Comparing near-infrared Imaging with indocyanine green to conventional imaging during laparoscopic cholecystectomy: a prospective cross-over Study. J laparoendosc Adv Surg tech 25(6):486–492CrossRefGoogle Scholar
  46. 46.
    Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2014) Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc 28(4):1076–1082CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, Masrur M, Milone L, Giulianotti PC (2014) Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single Institution. Surg Innov 21(6):615–621CrossRefPubMedGoogle Scholar
  48. 48.
    Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM (2013) Real-time near-infrared (NIR) fluorescent cholangiography in single site robotic cholecystectomy (SSRC): a single institutional study. Surg Endosc 27:2156–2162CrossRefPubMedGoogle Scholar
  49. 49.
    Schols RM, Bouvy ND, van Dam RM, Masclee AA, Dejong CH, Stassen LP (2013) Combined vascular and ciliary fluorescence imaging in laparoscopic cholecystectomy. Surg Endosc 27:4511–4517CrossRefPubMedGoogle Scholar
  50. 50.
    Liu YY, Kong SH, Diana M, Lègner A, Wu CC, Kameyama N, Dallemagne B, Marescaux J (2015) Near-infrared cholecysto-cholangiography with indocyanine green may secure cholecystectomy in difficult clinical situations: proof of the concept in a porcine model. Surg Endosc 30:4115–4223CrossRefPubMedGoogle Scholar
  51. 51.
    Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97:1269–1377CrossRefGoogle Scholar
  52. 52.
    Andersson R, Eriksson K, Blind PJ, Tingstedt B (2008) Bile duct injury—a cost analysis. HPB 10(6):416–419CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) 2017

Authors and Affiliations

  • Bryan J. Sandler
    • 1
  • Danny Sherwinter
    • 2
  • Lucian Panait
    • 3
  • Richard Parent
    • 4
  • Jennifer Schwartz
    • 5
  • David Renton
    • 6
    Email author
  1. 1.University of California San Diego HealthSan DiegoUSA
  2. 2.Maimonides Medical CenterBrooklynUSA
  3. 3.AtlantiCare Regional Medical CenterAtlantic CityUSA
  4. 4.St. Helena HospitalSt. HelenaUSA
  5. 5.Beth Israel Deaconess Medical CenterBostonUSA
  6. 6.Ohio State University Wexner Medical CenterColumbusUSA

Personalised recommendations