Skip to main content

Sleeve gastrectomy, but not duodenojejunostomy, preserves total beta-cell mass in Goto-Kakizaki rats evaluated by three-dimensional optical projection tomography



In type 2 diabetes mellitus, there is a progressive loss of beta-cell mass. Bariatric surgery has in recent investigations showed promising results in terms of diabetes remission, but little is established regarding the effect of surgery on the survival or regeneration of pancreatic beta-cells. In this study, we aim to explore how bariatric surgery with its subsequent hormonal alterations affects the islets of Langerhans.


Twenty-four Goto-Kakizaki rats were operated with duodenojejunostomy (DJ), sleeve gastrectomy (SG) or sham operation. From the 38th week after surgery, body weight, fasting blood glucose, glycosylated hemoglobin, mixed meal tolerance with repeated measures of insulin, glucagon-like peptide 1, gastrin and total ghrelin were evaluated. Forty-six weeks after surgery, the animals were euthanized and the total beta-cell mass in all animals was examined by three-dimensional volume quantification by optical projection tomography based on the signal from insulin-specific antibody staining.


Body weight did not differ between groups (P g = 0.37). SG showed lower fasting blood glucose compared to DJ and sham (P g = 0.037); HbA1c levels in SG were lower compared to DJ only (p < 0.05). GLP-1 levels were elevated for DJ compared to SG and sham (P g = 0.001), whereas gastrin levels were higher in SG compared to the two other groups (P g = 0.002). Beta-cell mass was significantly greater in animals operated with SG compared to both DJ and sham (p = 0.036).


Sleeve gastrectomy is superior to duodenojejunostomy and sham operation when comparing the preservation of beta-cell mass 46 weeks after surgery in Goto-Kakizaki rats. This could be related to both the increased gastrin levels and the long-term improvement in glycemic parameters observed after this procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL (2011) β-Cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640. doi:10.1016/j.ajpath.2011.02.036

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  2. 2.

    Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, Son HY, Kang SK, Kim HS, Lee IK, Bonner-Weir S (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308. doi:10.1210/jc.2002-020735

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96. doi:10.1007/s001250200009

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Movassat J, Calderari S, Fernández E, Martín MA, Escrivá F, Plachot C, Gangnerau MN, Serradas P, Alvarez C, Portha B (2007) Type 2 diabetes—a matter of failing beta-cell neogenesis? Clues from the GK rat model. Diabetes Obes Metab 9(Suppl 2):187–195. doi:10.1111/j.1463-1326.2007.00786.x

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589. doi:10.1007/s00125-004-1336-4

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Meier JJ, Bonadonna RC (2013) Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119. doi:10.2337/dcS13-2008

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. 8.

    Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR (2001) Decreased insulin secretion in type 2 diabetes: A problem of cellular mass or function? Diabetes 50(Suppl 1):S169–S171

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Garber AJ (2011) Incretin effects on β-cell function, replication, and mass: the human perspective. Diabetes Care 34(Suppl 2):S258–S263. doi:10.2337/dc11-s230

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  10. 10.

    Vetere A, Choudhary A, Burns SM, Wagner BK (2014) Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov 13:278–289. doi:10.1038/nrd4231

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen SE, Kashyap SR, STAMPEDE investigators (2014) Bariatric surgery versus intensive medical therapy for diabetes–3-year outcomes. N Engl J Med 370:2002–2013. doi:10.1056/NEJMoa1401329

    Article  PubMed  Google Scholar 

  12. 12.

    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585. doi:10.1056/NEJMoa1200111

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, Diamond E (2004) The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 240:236–242. doi:10.1097/01.sla.0000133117.12646.48

    PubMed Central  Article  PubMed  Google Scholar 

  14. 14.

    Basso N, Capoccia D, Rizzello M, Abbatini F, Mariani P, Maglio C, Coccia F, Borgonuovo G, De Luca ML, Asprino R, Alessandri G, Casella G, Leonetti F (2011) First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg Endosc 25:3540–3550. doi:10.1007/s00464-011-1755-5

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Rubino F (2008) Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 31(Suppl 2):S290–S296. doi:10.2337/dc08-s271

    Article  PubMed  Google Scholar 

  16. 16.

    Umeda LM, Silva EA, Carneiro G, Arasaki CH, Geloneze B, Zanella MT (2011) Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients. Obes Surg 21:896–901. doi:10.1007/s11695-011-0412-3

    Article  PubMed  Google Scholar 

  17. 17.

    Malin S, Samat A, Wolski K, Abood B, Pothier CE, Bhatt DL, Nissen S, Brethauer SA, Schauer PR, Kirwan JP, Kashyap SR (2014) Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes (Lond) 38:364–370. doi:10.1038/ijo.2013.196

    Article  CAS  Google Scholar 

  18. 18.

    Grong E, Arbo IB, Thu OK, Kuhry E, Kulseng B, Mårvik R (2014) The effect of duodenojejunostomy and sleeve gastrectomy on type 2 diabetes mellitus and gastrin secretion in Goto-Kakizaki rats. Surg Endosc. doi:10.1007/s00464-014-3732-2

    PubMed  Google Scholar 

  19. 19.

    Perfetti R, Zhou J, Doyle ME, Egan JM (2000) Glucagon-like peptide-1 induces cell proliferation and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141:4600–4605

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Granata R, Volante M, Settanni F, Gauna C, Ghé C, Annunziata M, Deidda B, Gesmundo I, Abribat T, van der Lely AJ, Muccioli G, Ghigo E, Papotti M (2010) Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J Mol Endocrinol 45:9–17. doi:10.1677/JME-09-0141

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Bödvarsdóttir TB, Hove KD, Gotfredsen CF, Pridal L, Vaag A, Karlsen AE, Petersen JS (2010) Treatment with a proton pump inhibitor improves glycaemic control in Psammomys obesus, a model of type 2 diabetes. Diabetologia 53:2220–2223. doi:10.1007/s00125-010-1825-6

    PubMed Central  Article  PubMed  Google Scholar 

  22. 22.

    Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S (2000) Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 49:347–352

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Movassat J, Saulnier C, Serradas P, Portha B (1997) Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia 40:916–925. doi:10.1007/s001250050768

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545. doi:10.1126/science.1068206

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Alanentalo T, Asayesh A, Morrison H, Lorén CE, Holmberg D, Sharpe J, Ahlgren U (2007) Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat Methods 4:31–33. doi:10.1038/nmeth985

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Hörnblad A, Cheddad A, Ahlgren U (2011) An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution. Islets 3:204–208. doi:10.4161/isl.3.4.16417

    PubMed Central  Article  PubMed  Google Scholar 

  27. 27.

    Eriksson AU, Svensson C, Hörnblad A, Cheddad A, Kostromina E, Eriksson M, Norlin N, Pileggi A, Sharpe J, Georgsson F, Alanentalo T, Ahlgren U (2013) Near infrared optical projection tomography for assessments of β-cell mass distribution in diabetes research. J Vis Exp 3001:e50238. doi:10.3791/50238

    Google Scholar 

  28. 28.

    Hörnblad A, Eriksson AU, Sock E, Hill RE, Ahlgren U (2011) Impaired spleen formation perturbs morphogenesis of the gastric lobe of the pancreas. PLoS ONE 6:e21753. doi:10.1371/journal.pone.0021753

    PubMed Central  Article  PubMed  Google Scholar 

  29. 29.

    Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U (2012) Image processing assisted algorithms for optical projection tomography. IEEE Trans Med Imaging 31:1–15. doi:10.1109/TMI.2011.2161590

    Article  PubMed  Google Scholar 

  30. 30.

    Kleveland PM, Haugen SE, Waldum HL (1985) The preparation of bioactive 125I-gastrin, using iodo-gen as oxidizing agent, and the use of this tracer in receptor studies. Scand J Gastroenterol 20:569–576

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Gao W, Bihorel S, DuBois DC, Almon RR, Jusko WJ (2011) Mechanism-based disease progression modeling of type 2 diabetes in Goto-Kakizaki rats. J Pharmacokinet Pharmacodyn 38:143–162. doi:10.1007/s10928-010-9182-0

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  32. 32.

    Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A (2010) Beta-cell growth and regeneration: replication is only part of the story. Diabetes 59:2340–2348. doi:10.2337/db10-0084

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  33. 33.

    Sillakivi T, Suumann J, Kirsimägi Ü, Peetsalu A (2011) Plasma levels of gastric biomarkers in patients after bariatric surgery: biomarkers after bariatric surgery. Hepatogastroenterology 60:225–230. doi:10.5754/hge

    Google Scholar 

  34. 34.

    Tourrel C, Bailbé D, Meile MJ, Kergoat M, Portha B (2001) Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50:1562–1570

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV (2005) Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 353:249–254

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Meier JJ, Butler AE, Galasso R, Butler PC (2006) Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased beta-cell turnover. Diabetes Care 29:1554–1559. doi:10.2337/dc06-0392

    Article  PubMed  Google Scholar 

  38. 38.

    Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, Kern B, von Fluee M, Beglinger C (2012) Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 22:740–748. doi:10.1007/s11695-012-0622-3

    PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D, Camastra S, Barsotti E, Berta R, Moriconi D, Bellini R, Anselmino M, Ferrannini E (2013) Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab 98:4391–4399. doi:10.1210/jc.2013-2538

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Jiménez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J (2014) GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes 63:3372–3377. doi:10.2337/db14-0357

    Article  PubMed  Google Scholar 

  41. 41.

    Wilson-Pérez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, Drucker DJ, Pérez-Tilve D, Seeley RJ (2013) Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes 62:2380–2385. doi:10.2337/db12-1498

    PubMed Central  Article  PubMed  Google Scholar 

  42. 42.

    Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A (2005) Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 54:2596–2601

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Suarez-pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57:3281–3288. doi:10.2337/db08-0688

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  44. 44.

    Singh PK, Hota D, Dutta P, Sachdeva N, Chakrabarti A, Srinivasan A, Singh I, Bhansali A (2012) Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 97:E2105–E2108. doi:10.1210/jc.2012-1720

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Hove KD, Brøns C, Færch K, Lund SS, Petersen JS, Karlsen AE, Rossing P, Rehfeld JF, Vaag A (2013) Effects of 12 weeks’ treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardiovascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia 56:22–30. doi:10.1007/s00125-012-2714-y

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Fosgerau K, Jessen L, Lind Tolborg J, Østerlund T, Schæffer Larsen K, Rolsted K, Brorson M, Jelsing J, Skovlund Ryge Neerup T (2013) The novel GLP-1-gastrin dual agonist, ZP3022, increases β-cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab 15:62–71. doi:10.1111/j.1463-1326.2012.01676.x

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Dalbøge LS, Almholt DL, Neerup TS, Vrang N, Jelsing J, Fosgerau K (2014) The novel GLP-1-gastrin dual agonist, ZP3022, improves glucose homeostasis and increases beta-cell mass without affecting islet number in db/db mice. J Pharmacol Exp Ther 350:353–360. doi:10.1124/jpet.114.215293

    Article  PubMed  Google Scholar 

  48. 48.

    Dezaki K, Sone H, Koizumi M, Nakata M, Kakei M, Nagai H, Hosoda H, Kangawa K, Yada T (2006) Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance. Diabetes 55:3486–3493. doi:10.2337/db06-0878

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Koyama M, Wada R, Sakuraba H, Mizukami H, Yagihashi S (1998) Accelerated loss of islet beta-cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 153:537–545

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  50. 50.

    Lindqvist A, Spégel P, Ekelund M, Garcia Vaz E, Pierzynowski S, Gomez MF, Mulder H, Hedenbro J, Groop L, Wierup N (2014) Gastric bypass improves β-cell function and increases β-cell mass in a porcine model. Diabetes 63:1665–1671. doi:10.2337/db13-0969

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ (2011) Duodenal–jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab 300:E923–E932. doi:10.1152/ajpendo.00422.2010

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Chai F, Wang Y, Zhou Y, Liu Y, Geng D, Liu J (2011) Adiponectin downregulates hyperglycemia and reduces pancreatic islet apoptosis after roux-en-y gastric bypass surgery. Obes Surg 21:768–773. doi:10.1007/s11695-011-0357-6

    Article  PubMed  Google Scholar 

  53. 53.

    Li Z, Zhang H-Y, Lv L-X, Li D-F, Dai J-X, Sha O, Li W-Q, Bai Y, Yuan L (2010) Roux-en-Y gastric bypass promotes expression of PDX-1 and regeneration of beta-cells in Goto-Kakizaki rats. World J Gastroenterol 16:2244. doi:10.3748/wjg.v16.i18.2244

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  54. 54.

    Inabnet WB, Milone L, Harris P, Durak E, Freeby MJ, Ahmed L, Sebastian M, Lifante JC, Bessler M, Korner J (2010) The utility of [(11)C] dihydrotetrabenazine positron emission tomography scanning in assessing beta-cell performance after sleeve gastrectomy and duodenal–jejunal bypass. Surg Obes Relat Dis 147:303–309. doi:10.1016/j.surg.2009.08.005

    Google Scholar 

Download references


We would like to thank biomedical laboratory scientist (BLS) Britt Schulze for performing gastrin RIA. We also would like to thank BLS Kristin Graven for performing HbA1c and general blood analyses. We would also thank PhD MSc Anna Eriksson for sharing and communicating her knowledge on the OPT protocol. Again we will express our gratitude toward the staff at the Department of comparative medicine at NTNU for technical assistance and their devoted care for all our animals. This study has been supported by the Norwegian University of Science and Technology (NTNU), Centre for Obesity, The Norwegian National Advisory Unit on Advanced Laparoscopic Surgery (NSALK) and The Cancer Fund, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, and The Swedish Research Council, Sweden.


Eivind Grong MS, Ingerid Brænne Arbo BLS PhD, Christoffer Nord MSc, Maria Eriksson MSc, Ulf Ahlgren MSc PhD, Bård Erik Kulseng MD PhD and Ronald Mårvik MD PhD have no conflicts of interest or financial ties to disclose.

Author information



Corresponding author

Correspondence to Eivind Grong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grong, E., Kulseng, B., Arbo, I.B. et al. Sleeve gastrectomy, but not duodenojejunostomy, preserves total beta-cell mass in Goto-Kakizaki rats evaluated by three-dimensional optical projection tomography. Surg Endosc 30, 532–542 (2016).

Download citation


  • Duodenojejunostomy
  • Sleeve gastrectomy
  • Gastrin
  • Glucagon-like peptide 1
  • Beta-cell mass
  • Optical projection tomography
  • Goto-Kakizaki rats
  • Type 2 diabetes mellitus