Skip to main content
Log in

A novel augmented reality simulator for skills assessment in minimal invasive surgery

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

Over the past decade, simulation-based training has come to the foreground as an efficient method for training and assessment of surgical skills in minimal invasive surgery. Box-trainers and virtual reality (VR) simulators have been introduced in the teaching curricula and have substituted to some extent the traditional model of training based on animals or cadavers. Augmented reality (AR) is a new technology that allows blending of VR elements and real objects within a real-world scene. In this paper, we present a novel AR simulator for assessment of basic laparoscopic skills.

Methods

The components of the proposed system include: a box-trainer, a camera and a set of laparoscopic tools equipped with custom-made sensors that allow interaction with VR training elements. Three AR tasks were developed, focusing on basic skills such as perception of depth of field, hand-eye coordination and bimanual operation. The construct validity of the system was evaluated via a comparison between two experience groups: novices with no experience in laparoscopic surgery and experienced surgeons. The observed metrics included task execution time, tool pathlength and two task-specific errors. The study also included a feedback questionnaire requiring participants to evaluate the face-validity of the system.

Results

Between-group comparison demonstrated highly significant differences (<0.01) in all performance metrics and tasks denoting the simulator’s construct validity. Qualitative analysis on the instruments’ trajectories highlighted differences between novices and experts regarding smoothness and economy of motion. Subjects’ ratings on the feedback questionnaire highlighted the face-validity of the training system.

Conclusions

The results highlight the potential of the proposed simulator to discriminate groups with different expertise providing a proof of concept for the potential use of AR as a core technology for laparoscopic simulation training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.arduino.cc/.

  2. http://www.ogre3d.org.

  3. http://www.artoolworks.com.

  4. http://bulletphysics.org.

  5. http://www.blender.org.

References

  1. Kotsis SV, Chung KC (2013) Application of the “see one, do one, teach one” concept in surgical training. Plast Reconstr Surg 131(5):1194–1201. doi:10.1097/PRS.0b013e318287a0b3

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB, Hunt EA, Pronovost PJ (2009) Beyond “see one, do one, teach one”: toward a different training paradigm. Postgrad Med J 85(1003):244–249. doi:10.1136/qshc.2007.023903

    Article  CAS  PubMed  Google Scholar 

  3. McGreevy JM (2005) The aviation paradigm and surgical education. J Am Coll Surg 201(1):110–117. doi:10.1016/j.jamcollsurg.2005.02.024

    Article  PubMed  Google Scholar 

  4. Satava RM (1993) Virtual reality surgical simulator. Surg Endosc 7(3):203–205

    Article  CAS  PubMed  Google Scholar 

  5. Willaert WI, Aggarwal R, Van Herzeele I, Cheshire NJ, Vermassen FE (2012) Recent advancements in medical simulation: patient-specific virtual reality simulation. World J Surg 36(7):1703–1712. doi:10.1007/s00268-012-1489-0

    Article  PubMed  Google Scholar 

  6. Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B, Levine AI (2009) The utility of simulation in medical education: what is the evidence? Mt Sinai J Med 76(4):330–343. doi:10.1002/msj.20127

    Article  PubMed  Google Scholar 

  7. Munz Y, Almoudaris AM, Moorthy K, Dosis A, Liddle AD, Darzi AW (2007) Curriculum-based solo virtual reality training for laparoscopic intracorporeal knot tying: objective assessment of the transfer of skill from virtual reality to reality. Am J Surg 193(6):774–783. doi:10.1016/j.amjsurg.2007.01.022

    Article  PubMed  Google Scholar 

  8. Hanna L (2010) Simulated surgery: the virtual reality of surgical training. Surgery (Oxford) 28(9):463–468

    Article  Google Scholar 

  9. Mohammadi Y, Lerner MA, Sethi AS, Sundaram CP (2010) Comparison of laparoscopy training using the box trainer versus the virtual trainer. J Soc Laparoendosc Surg 14(2):205–212. doi:10.4293/108680810X12785289144115

    Article  Google Scholar 

  10. De Paolis LT (2012) Serious game for laparoscopic suturing training. In: CISIS’12 proceedings of the 2012 sixth international conference on complex, intelligent and software intensive systems, 4–6 July 2012. pp 481–485. doi:10.1109/cisis.2012.175

  11. Gor M, McCloy R, Stone R, Smith A (2003) Virtual reality laparoscopic simulator for assessment in gynaecology. BJOG 110(2):181–187

    Article  PubMed  Google Scholar 

  12. Lahanas V, Loukas C, Nikiteas N, Dimitroulis D, Georgiou E (2011) Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios. In: The 17th international conference on digital signal processing (DSP), 2011 , 6–8 July 2011, pp 1–6. doi:10.1109/icdsp.2011.6004893

  13. Palter VN, Grantcharov TP (2010) Simulation in surgical education. Can Med Assoc J 182(11):1191–1196. doi:10.1503/cmaj.091743

    Article  Google Scholar 

  14. Lewandowski WA (2006) return on investment (ROI) model to measure and evaluate medical simulation using a systematic results-based approach. In: Medicine meets virtual reality, pp 24–27

  15. Nolle S, Klinker G (2006) Augmented reality as a comparison tool in automotive industry. In: IEEE/ACM international symposium on mixed and augmented reality, 2006 (ISMAR 2006), 22–25 Oct 2006, pp 249–250. doi:10.1109/ismar.2006.297829

  16. Vlahakis V, Karigiannis J, Tsotros M, Gounaris M, Almeida L, Stricker D, Gleue T, Christou IT, Carlucci R, Ioannidis N (2001) Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. Paper presented at the proceedings of the 2001 conference on virtual reality, archeology, and cultural heritage, Glyfada, Greece

  17. Haritos T, Macchiarella ND (2005) A mobile application of augmented reality for aerospace maintenance training. In: Proceedings of the 24th digital avionics systems conference, 2005 (DASC 2005), 30 Oct–3 Nov 2005, pp vol 1,5.B.3–5.1-9 Vol. 1. doi:10.1109/dasc.2005.1563376

  18. van Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Real 9(2):1–20

    Google Scholar 

  19. Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896–900. doi:10.1016/j.urology.2008.11.040

    Article  PubMed  Google Scholar 

  20. Azuma RT (1997) A survey of augmented reality. Presence: Teleoper Virtual Environ 6(4):355–385

    Google Scholar 

  21. Nijmeh AD, Goodger NM, Hawkes D, Edwards PJ, McGurk M (2005) Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 43(4):294–302. doi:10.1016/j.bjoms.2004.11.018

    Article  CAS  PubMed  Google Scholar 

  22. Fuchs H, Livingston MA, Raskar R, Colucci Dn, Keller K, State A, Crawford JR, Rademacher P, Drake SH, Meyer AA (1998) Augmented reality visualization for laparoscopic surgery. Paper presented at the proceedings of the first international conference on medical image computing and computer-assisted intervention

  23. Volonte F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P (2011) Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepato Biliary Pancreat Sci 18(4):506–509. doi:10.1007/s00534-011-0385-6

    Article  Google Scholar 

  24. Pagador JB, Sanchez LF, Sanchez JA, Bustos P, Moreno J, Sanchez-Margallo FM (2011) Augmented reality haptic (ARH): an approach of electromagnetic tracking in minimally invasive surgery. Int J Comput Assist Radiol Surg 6(2):257–263. doi:10.1007/s11548-010-0501-0

    Article  CAS  PubMed  Google Scholar 

  25. Weiss CR, Marker DR, Fischer GS, Fichtinger G, Machado AJ, Carrino JA (2011) Augmented reality visualization using image overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. Am J Roentgenol 196(3):W305–W307. doi:10.2214/AJR.10.5038

    Article  Google Scholar 

  26. Loukas C, Lahanas V, Georgiou E (2013) An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training. Int J Med Robot Comput Surg 9(4):e34–e51

    Article  Google Scholar 

  27. Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23(8):1693–1700. doi:10.1007/s00464-008-0144-1

    Article  PubMed Central  PubMed  Google Scholar 

  28. Van Sickle KR, McClusky DA 3rd, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc 19(9):1227–1231. doi:10.1007/s00464-004-8274-6

    Article  PubMed  Google Scholar 

  29. Oostema JA, Abdel MP, Gould JC (2008) Time-efficient laparoscopic skills assessment using an augmented-reality simulator. Surg Endosc 22(12):2621–2624. doi:10.1007/s00464-008-9844-9

    Article  PubMed  Google Scholar 

  30. Lakshmi B, Dhar AS (2010) CORDIC architectures: a survey. VLSI design 2010. doi:10.1155/2010/794891

  31. Maithel S, Sierra R, Korndorffer J, Neumann P, Dawson S, Callery M, Jones D, Scott D (2006) Construct and face validity of MIST-VR, Endotower, and CELTS. Surg Endosc 20(1):104–112

    Article  CAS  PubMed  Google Scholar 

  32. Woodrum DT, Andreatta PB, Yellamanchilli RK, Feryus L, Gauger PG, Minter RM (2006) Construct validity of the LapSim laparoscopic surgical simulator. Am J Surg 191(1):28–32

    Article  PubMed  Google Scholar 

  33. Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156(2):312–316

    Article  PubMed  Google Scholar 

  34. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236(4):458

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosures

Mr. Vasileios Lahanas, Dr. Constantinos Loukas, Mr. Nikolaos Smailis and Dr. Evangelos Georgiou have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Lahanas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahanas, V., Loukas, C., Smailis, N. et al. A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surg Endosc 29, 2224–2234 (2015). https://doi.org/10.1007/s00464-014-3930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3930-y

Keywords

Navigation