Surgical Endoscopy

, Volume 29, Issue 8, pp 2224–2234 | Cite as

A novel augmented reality simulator for skills assessment in minimal invasive surgery

  • Vasileios LahanasEmail author
  • Constantinos Loukas
  • Nikolaos Smailis
  • Evangelos Georgiou



Over the past decade, simulation-based training has come to the foreground as an efficient method for training and assessment of surgical skills in minimal invasive surgery. Box-trainers and virtual reality (VR) simulators have been introduced in the teaching curricula and have substituted to some extent the traditional model of training based on animals or cadavers. Augmented reality (AR) is a new technology that allows blending of VR elements and real objects within a real-world scene. In this paper, we present a novel AR simulator for assessment of basic laparoscopic skills.


The components of the proposed system include: a box-trainer, a camera and a set of laparoscopic tools equipped with custom-made sensors that allow interaction with VR training elements. Three AR tasks were developed, focusing on basic skills such as perception of depth of field, hand-eye coordination and bimanual operation. The construct validity of the system was evaluated via a comparison between two experience groups: novices with no experience in laparoscopic surgery and experienced surgeons. The observed metrics included task execution time, tool pathlength and two task-specific errors. The study also included a feedback questionnaire requiring participants to evaluate the face-validity of the system.


Between-group comparison demonstrated highly significant differences (<0.01) in all performance metrics and tasks denoting the simulator’s construct validity. Qualitative analysis on the instruments’ trajectories highlighted differences between novices and experts regarding smoothness and economy of motion. Subjects’ ratings on the feedback questionnaire highlighted the face-validity of the training system.


The results highlight the potential of the proposed simulator to discriminate groups with different expertise providing a proof of concept for the potential use of AR as a core technology for laparoscopic simulation training.


Augmented reality Laparoscopy Simulation Performance assessment 



Mr. Vasileios Lahanas, Dr. Constantinos Loukas, Mr. Nikolaos Smailis and Dr. Evangelos Georgiou have no conflicts of interest or financial ties to disclose.


  1. 1.
    Kotsis SV, Chung KC (2013) Application of the “see one, do one, teach one” concept in surgical training. Plast Reconstr Surg 131(5):1194–1201. doi: 10.1097/PRS.0b013e318287a0b3 PubMedCrossRefGoogle Scholar
  2. 2.
    Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB, Hunt EA, Pronovost PJ (2009) Beyond “see one, do one, teach one”: toward a different training paradigm. Postgrad Med J 85(1003):244–249. doi: 10.1136/qshc.2007.023903 PubMedCrossRefGoogle Scholar
  3. 3.
    McGreevy JM (2005) The aviation paradigm and surgical education. J Am Coll Surg 201(1):110–117. doi: 10.1016/j.jamcollsurg.2005.02.024 PubMedCrossRefGoogle Scholar
  4. 4.
    Satava RM (1993) Virtual reality surgical simulator. Surg Endosc 7(3):203–205PubMedCrossRefGoogle Scholar
  5. 5.
    Willaert WI, Aggarwal R, Van Herzeele I, Cheshire NJ, Vermassen FE (2012) Recent advancements in medical simulation: patient-specific virtual reality simulation. World J Surg 36(7):1703–1712. doi: 10.1007/s00268-012-1489-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Okuda Y, Bryson EO, DeMaria S Jr, Jacobson L, Quinones J, Shen B, Levine AI (2009) The utility of simulation in medical education: what is the evidence? Mt Sinai J Med 76(4):330–343. doi: 10.1002/msj.20127 PubMedCrossRefGoogle Scholar
  7. 7.
    Munz Y, Almoudaris AM, Moorthy K, Dosis A, Liddle AD, Darzi AW (2007) Curriculum-based solo virtual reality training for laparoscopic intracorporeal knot tying: objective assessment of the transfer of skill from virtual reality to reality. Am J Surg 193(6):774–783. doi: 10.1016/j.amjsurg.2007.01.022 PubMedCrossRefGoogle Scholar
  8. 8.
    Hanna L (2010) Simulated surgery: the virtual reality of surgical training. Surgery (Oxford) 28(9):463–468CrossRefGoogle Scholar
  9. 9.
    Mohammadi Y, Lerner MA, Sethi AS, Sundaram CP (2010) Comparison of laparoscopy training using the box trainer versus the virtual trainer. J Soc Laparoendosc Surg 14(2):205–212. doi: 10.4293/108680810X12785289144115 CrossRefGoogle Scholar
  10. 10.
    De Paolis LT (2012) Serious game for laparoscopic suturing training. In: CISIS’12 proceedings of the 2012 sixth international conference on complex, intelligent and software intensive systems, 4–6 July 2012. pp 481–485. doi: 10.1109/cisis.2012.175
  11. 11.
    Gor M, McCloy R, Stone R, Smith A (2003) Virtual reality laparoscopic simulator for assessment in gynaecology. BJOG 110(2):181–187PubMedCrossRefGoogle Scholar
  12. 12.
    Lahanas V, Loukas C, Nikiteas N, Dimitroulis D, Georgiou E (2011) Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios. In: The 17th international conference on digital signal processing (DSP), 2011 , 6–8 July 2011, pp 1–6. doi: 10.1109/icdsp.2011.6004893
  13. 13.
    Palter VN, Grantcharov TP (2010) Simulation in surgical education. Can Med Assoc J 182(11):1191–1196. doi: 10.1503/cmaj.091743 CrossRefGoogle Scholar
  14. 14.
    Lewandowski WA (2006) return on investment (ROI) model to measure and evaluate medical simulation using a systematic results-based approach. In: Medicine meets virtual reality, pp 24–27Google Scholar
  15. 15.
    Nolle S, Klinker G (2006) Augmented reality as a comparison tool in automotive industry. In: IEEE/ACM international symposium on mixed and augmented reality, 2006 (ISMAR 2006), 22–25 Oct 2006, pp 249–250. doi: 10.1109/ismar.2006.297829
  16. 16.
    Vlahakis V, Karigiannis J, Tsotros M, Gounaris M, Almeida L, Stricker D, Gleue T, Christou IT, Carlucci R, Ioannidis N (2001) Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. Paper presented at the proceedings of the 2001 conference on virtual reality, archeology, and cultural heritage, Glyfada, GreeceGoogle Scholar
  17. 17.
    Haritos T, Macchiarella ND (2005) A mobile application of augmented reality for aerospace maintenance training. In: Proceedings of the 24th digital avionics systems conference, 2005 (DASC 2005), 30 Oct–3 Nov 2005, pp vol 1,5.B.3–5.1-9 Vol. 1. doi: 10.1109/dasc.2005.1563376
  18. 18.
    van Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Real 9(2):1–20Google Scholar
  19. 19.
    Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4):896–900. doi: 10.1016/j.urology.2008.11.040 PubMedCrossRefGoogle Scholar
  20. 20.
    Azuma RT (1997) A survey of augmented reality. Presence: Teleoper Virtual Environ 6(4):355–385Google Scholar
  21. 21.
    Nijmeh AD, Goodger NM, Hawkes D, Edwards PJ, McGurk M (2005) Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 43(4):294–302. doi: 10.1016/j.bjoms.2004.11.018 PubMedCrossRefGoogle Scholar
  22. 22.
    Fuchs H, Livingston MA, Raskar R, Colucci Dn, Keller K, State A, Crawford JR, Rademacher P, Drake SH, Meyer AA (1998) Augmented reality visualization for laparoscopic surgery. Paper presented at the proceedings of the first international conference on medical image computing and computer-assisted interventionGoogle Scholar
  23. 23.
    Volonte F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P (2011) Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepato Biliary Pancreat Sci 18(4):506–509. doi: 10.1007/s00534-011-0385-6 CrossRefGoogle Scholar
  24. 24.
    Pagador JB, Sanchez LF, Sanchez JA, Bustos P, Moreno J, Sanchez-Margallo FM (2011) Augmented reality haptic (ARH): an approach of electromagnetic tracking in minimally invasive surgery. Int J Comput Assist Radiol Surg 6(2):257–263. doi: 10.1007/s11548-010-0501-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Weiss CR, Marker DR, Fischer GS, Fichtinger G, Machado AJ, Carrino JA (2011) Augmented reality visualization using image overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. Am J Roentgenol 196(3):W305–W307. doi: 10.2214/AJR.10.5038 CrossRefGoogle Scholar
  26. 26.
    Loukas C, Lahanas V, Georgiou E (2013) An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training. Int J Med Robot Comput Surg 9(4):e34–e51CrossRefGoogle Scholar
  27. 27.
    Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23(8):1693–1700. doi: 10.1007/s00464-008-0144-1 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Van Sickle KR, McClusky DA 3rd, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc 19(9):1227–1231. doi: 10.1007/s00464-004-8274-6 PubMedCrossRefGoogle Scholar
  29. 29.
    Oostema JA, Abdel MP, Gould JC (2008) Time-efficient laparoscopic skills assessment using an augmented-reality simulator. Surg Endosc 22(12):2621–2624. doi: 10.1007/s00464-008-9844-9 PubMedCrossRefGoogle Scholar
  30. 30.
    Lakshmi B, Dhar AS (2010) CORDIC architectures: a survey. VLSI design 2010. doi: 10.1155/2010/794891
  31. 31.
    Maithel S, Sierra R, Korndorffer J, Neumann P, Dawson S, Callery M, Jones D, Scott D (2006) Construct and face validity of MIST-VR, Endotower, and CELTS. Surg Endosc 20(1):104–112PubMedCrossRefGoogle Scholar
  32. 32.
    Woodrum DT, Andreatta PB, Yellamanchilli RK, Feryus L, Gauger PG, Minter RM (2006) Construct validity of the LapSim laparoscopic surgical simulator. Am J Surg 191(1):28–32PubMedCrossRefGoogle Scholar
  33. 33.
    Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156(2):312–316PubMedCrossRefGoogle Scholar
  34. 34.
    Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 236(4):458PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vasileios Lahanas
    • 1
    Email author
  • Constantinos Loukas
    • 1
  • Nikolaos Smailis
    • 1
  • Evangelos Georgiou
    • 1
  1. 1.Medical Physics Laboratory Simulation Centre, School of MedicineUniversity of AthensAthensGreece

Personalised recommendations