Skip to main content
Log in

Imaging visceral adhesion to polymeric mesh using pneumoperitoneal-MRI in an experimental rat model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Intraperitoneal mesh implantation is often associated with formation of adhesion to the mesh. This experimental study examines the potential of minimally invasive pneumoperitoneal-MRI to assess these adhesions in a preclinical context.

Methods

Uncoated polyethylene terephthalate meshes were placed intraperitoneally in rats, in regard to the caecum previously scraped to promote petechial bleeding and subsequent adhesions. Examinations were performed 2-weeks post mesh implantation using a rodent dedicated high field MRI. Respiratory-triggered T2-weighted images were acquired prior to and after intraperitoneal injection of ~8–10 mL gas to induce a mechanical stress on the abdominal wall.

Results

Adhesions are occasionally seen in sham-operated rats as opposed to rats receiving polyethylene terephthalate meshes. On high-resolution images, meshes can be detected due to their characteristic net shape. However, evidence of adherence is only found if intraperitoneal gas injection is performed, when a ~1-cm elevation of the abdominal wall is observed. When adherence occurs between the mesh and the caecum, the latter remains in contact with the wall. Looser adherences between visceral tissue and meshes are also observed.

Conclusions

T2-weighted pneumoperitoneal-MRI is a powerful tool for assessing adherence after intraperitoneal mesh implantation. According to the mini-invasive procedure adopted here, this approach may allow a temporal follow-up of adherence fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J (2004) Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg 240:578–583 discussion 583–575

    PubMed Central  PubMed  Google Scholar 

  2. Shankaran V, Weber DJ, Reed RL 2nd, Luchette FA (2011) A review of available prosthetics for ventral hernia repair. Ann Surg 253:16–26

    Article  PubMed  Google Scholar 

  3. Bellon JM, Rodriguez M, Gomez-Gil V, Sotomayor S, Bujan J, Pascual G (2012) Postimplant intraperitoneal behavior of collagen-based meshes followed by laparoscopy. Surg Endosc Other Interv Tech 26:27–35

    Article  Google Scholar 

  4. Pascual G, Perez-Kohler B, Rodriguez M, Sotomayor S, Bellon JM (2014) Postimplantation host tissue response and biodegradation of biologic versus polymer meshes implanted in an intraperitoneal position. Surg Endosc Other Interv Tech 28:559–569

    Article  CAS  Google Scholar 

  5. Franconi F, Roux J, Garric X, Lemaire L (2014) Early postsurgical visualization of composite mesh used in ventral hernia repair by amide proton transfer MRI. Magn Reson Med 71:313–317

    Article  PubMed  Google Scholar 

  6. Blanquer S, Guillaume O, Letouzey V, Lemaire L, Franconi F, Paniagua C, Coudane J, Garric X (2012) New magnetic-resonance-imaging-visible poly(epsilon-caprolactone)-based polyester for biomedical applications. Acta Biomater 8:1339–1347

    Article  CAS  PubMed  Google Scholar 

  7. Guillaume O, Blanquer S, Letouzey V, Cornille A, Huberlant S, Lemaire L, Franconi F, de Tayrac R, Coudane J, Garric X (2012) Permanent polymer coating for in vivo MRI visualization of tissue reinforcement prostheses. Macromol Biosci 12:1364–1374

    Article  CAS  PubMed  Google Scholar 

  8. Kramer NA, Donker HC, Otto J, Hodenius M, Senegas J, Slabu I, Klinge U, Baumann M, Mullen A, Obolenski B, Gunther RW, Krombach GA (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45:477–483

    Article  PubMed  Google Scholar 

  9. Kuehnert N, Kraemer NA, Otto J, Donker HC, Slabu I, Baumann M, Kuhl CK, Klinge U (2012) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–1475

    Article  PubMed Central  PubMed  Google Scholar 

  10. Levrant SG, Bieber EJ, Barnes RB (1997) Anterior abdominal wall adhesions after laparotomy or laparoscopy. J Am Assoc Gynecol Laparosc 4:353–356

    Article  CAS  PubMed  Google Scholar 

  11. Tingstedt B, Isaksson J, Andersson R (2007) Long-term follow-up and cost analysis following surgery for small bowel obstruction caused by intra-abdominal adhesions. Br J surg 94:743–748

    Article  CAS  PubMed  Google Scholar 

  12. Zinther NB, Zeuten A, Marinovskij E, Haislund M, Friis-Andersen H (2010) Detection of abdominal wall adhesions using visceral slide. Surg Endosc 24:3161–3166

    Article  PubMed  Google Scholar 

  13. Zinther NB, Fedder J, Friis-Andersen H (2010) Noninvasive detection and mapping of intraabdominal adhesions: a review of the current literature. Surg Endosc 24:2681–2686

    Article  PubMed  Google Scholar 

  14. Mussack T, Fischer T, Ladurner R, Gangkofer A, Bensler S, Hallfeldt KK, Reiser M, Lienemann A (2005) Cine magnetic resonance imaging vs high-resolution ultrasonography for detection of adhesions after laparoscopic and open incisional hernia repair: a matched pair pilot analysis. Surg Endosc 19:1538–1543

    Article  CAS  PubMed  Google Scholar 

  15. Harris ES, Morgan RF, Rodeheaver GT (1995) Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery 117:663–669

    Article  CAS  PubMed  Google Scholar 

  16. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  CAS  PubMed  Google Scholar 

  17. Yilmaz HG, Tacyildiz IH, Keles C, Gedik E, Kilinc N (2005) Micronized purified flavonoid fraction may prevent formation of intraperitoneal adhesions in rats. Fertil Steril 84(Suppl 2):1083–1088

    Article  CAS  PubMed  Google Scholar 

  18. Blauer KL, Collins RL (1988) The effect of intraperitoneal progesterone on postoperative adhesion formation in rabbits. Fertil Steril 49:144–149

    CAS  PubMed  Google Scholar 

  19. Di Loreto FP, Mangione A, Palmisano E, Cerda JI, Dominguez MJ, Ponce G, Bernaus M, Gaffuri S, Torresi G, Bianco S (2013) Dried human amniotic membrane as an antiadherent layer for intraperitoneal placing of polypropylene mesh in rats. Surg Endosc 27:1435–1440

    Article  PubMed  Google Scholar 

  20. Ditzel M, Deerenberg EB, Grotenhuis N, Harlaar JJ, Monkhorst K, Bastiaansen-Jenniskens YM, Jeekel J, Lange JF (2013) Biologic meshes are not superior to synthetic meshes in ventral hernia repair: an experimental study with long-term follow-up evaluation. Surg Endosc 27:3654–3662

    Article  CAS  PubMed  Google Scholar 

  21. Schreinemacher MH, van Barneveld KW, Dikmans RE, Gijbels MJ, Greve JW, Bouvy ND (2013) Coated meshes for hernia repair provide comparable intraperitoneal adhesion prevention. Surg Endosc 27:4202–4209

    Article  PubMed  Google Scholar 

  22. Sanchez-Margallo FM, Moyano-Cuevas JL, Latorre R, Maestre J, Correa L, Pagador JB, Sanchez-Peralta LF, Sanchez-Margallo JA, Uson-Gargallo J (2011) Anatomical changes due to pneumoperitoneum analyzed by MRI: an experimental study in pigs. Surg Radiol Anat 33:389–396

    Article  CAS  PubMed  Google Scholar 

  23. Miyano G, Yamataka A, Doi T, Okawada M, Takano Y, Kobayashi H, Lane GJ, Miyano T (2006) Carbon dioxide pneumoperitoneum prevents intraperitoneal adhesions after laparotomy in rats. J Pediatr Surg 41:1025–1028

    Article  PubMed  Google Scholar 

  24. Corona R, Binda MM, Mailova K, Verguts J, Koninckx PR (2013) Addition of nitrous oxide to the carbon dioxide pneumoperitoneum strongly decreases adhesion formation and the dose-dependent adhesiogenic effect of blood in a laparoscopic mouse model. Fertil Steril 100:1777–1783

    Article  CAS  PubMed  Google Scholar 

  25. Guo H, Leung JC, Cheung JS, Chan LY, Wu EX, Lai KN (2009) Non-viral Smad7 gene delivery and attenuation of postoperative peritoneal adhesion in an experimental model. Br J Surg 96:1323–1335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. O. Lefranc (Covidien, Trevoux, France) for the generous gift of the polyethylene terephthalate textile and Ms. A. Mourlan (Service Commun d’Animalerie Hospitalo-Universitaire, Université d’Angers) for peri-operative animal care. Dr. M.S.N Carpenter post-edited the English style.

Disclosures

F. Franconi, J. Roux, C. Lefebvre-Lacoeuille and L. Lemaire have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Lemaire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franconi, F., Roux, J., Lefebvre-Lacoeuille, C. et al. Imaging visceral adhesion to polymeric mesh using pneumoperitoneal-MRI in an experimental rat model. Surg Endosc 29, 1567–1573 (2015). https://doi.org/10.1007/s00464-014-3843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3843-9

Keywords

Navigation