Skip to main content
Log in

Effects of pneumoperitoneum and body position on the morphology of the caudal cava vein analyzed by MRI and plastinated sections

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Pneumoperitoneum and patient positioning are essential factors during laparoscopic surgical procedures. They cause hemodynamic and anatomical changes in several abdominal organs among which the caudal cava vein (CCV) is involved. Hemodynamic changes in this vein (decreased venous return) have been described in the porcine model, but how the vein morphology and size is affected at different abdominal levels is unknown. We sought to assess the morphological and morphometrical changes in the CCV of the pig caused by pneumoperitoneum and the reverse Trendelenburg position by in vivo magnetic resonance imaging (MRI).

Methods

Six pigs were scanned via MRI under four situations: S1, control (no pneumoperitoneum); S2, control in the reverse Trendelenburg position; S3, pneumoperitoneum (14 mmHg); and S4, pneumoperitoneum in the reverse Trendelenburg position. MRI and plastinated body sections were used to evaluate the topography, morphology and cross-sectional area of the CCV.

Results

Two portions of the CCV were differentiated: a prehepatic portion (located between the vertebral levels L1–T15) with flat and irregular morphology, and a hepatic portion (between T14–T11) that was almost rounded. The reverse Trendelenburg position caused an increase in the lumen affecting mainly the prehepatic portion, while pneumoperitoneum caused a decrease in the total vascular lumen, exerting a greater effect on the hepatic portion. The combination of both situations resulted in a further decrease in the vascular area and global morphological changes.

Conclusions

The pneumoperitoneum and reverse Trendelenburg position caused morphological and morphometrical changes in the prehepatic and hepatic portions of the CCV, which should assist in gaining a better understanding of the hemodynamic changes described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasukić S (2005) Postoperative changes in liver function tests: randomized comparison of low- and high-pressure laparoscopic cholecystectomy. Surg Endosc 19:1451–1455

    Article  PubMed  Google Scholar 

  2. Yoshida M, Ikeda S, Sumitani D, Takakura Y, Yoshimitsu M, Shimomura M, Noma M, Tokunaga M, Okajima M, Ohdan H (2010) Alterations in portal vein blood pH, hepatic functions, and hepatic histology in a porcine carbon dioxide pneumoperitoneum model. Surg Endosc 24:1693–1700

    Article  PubMed  Google Scholar 

  3. Bickel A, Loberant N, Bersudsky M, Goldfeld M, Ivry S, Herskovits M, Eitan A (2007) Overcoming reduced hepatic and renal perfusion caused by positive-pressure pneumoperitoneum. Arch Surg 142:119–124

    Article  PubMed  Google Scholar 

  4. Alexakis N, Gakiopoulou H, Dimitriou C, Albanopoulos K, Fingerhut A, Skalistira M, Patsouris E, Bramis J, Leandros E (2008) Liver histology alterations during carbon dioxide pneumoperitoneum in a porcine model. Surg Endosc 22:415–420

    Article  PubMed  CAS  Google Scholar 

  5. Gudmundsson FF, Viste A, Gislason H, Svanes K (2002) Comparison of different methods for measuring intra-abdominal pressure. Intensive Care Med 28:509–514

    Article  PubMed  CAS  Google Scholar 

  6. Rosenthal RJ, Friedman RL, Chidambaram A, Khan AM, Martz J, Shi Q, Nussbaum M (1998) Effects of hyperventilation and hypoventilation on PaCO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg 187:32–38

    Article  PubMed  CAS  Google Scholar 

  7. Sáenz Medina J, Asuero de Lis MS, Galindo Alvarez J, Villafruela Sanz J, Correa Gorospe C, Cuevas Sánchez B, Linares Quevedo AI, Páez Borda A, Pascual Santos J, Marcén Letosa R, Burgos Revilla J (2007) Modification of the hemodynamic parameters and peripheral vascular flow in a porcine experimental of model of laparoscopic nephrectomy. Arch Esp Urol 60:501–518

    Article  PubMed  Google Scholar 

  8. Schachtrupp A, Toens C, Hoer J, Klosterhalfen B, Lawong AG, Schumpelick V (2002) A 24-h pneumoperitoneum leads to multiple organ impairment in a porcine model. J Surg Res 106:37–45

    Article  PubMed  CAS  Google Scholar 

  9. Kotzampassi K, Paramythiotis D, Eleftheriadis E (2000) Deterioration of visceral perfusion caused by intra-abdominal hypertension in pigs ventilated with positive end-expiratory pressure. Surg Today 30:987–992

    Article  PubMed  CAS  Google Scholar 

  10. Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21:152–160

    Article  PubMed  Google Scholar 

  11. Azevedo JL, Azevedo OC, Miyahira SA, Miguel GP, Becker OM, Hypólito OH, Machado AC, Cardia W, Yamaguchi GA, Godinho L, Freire D, Almeida CE, Moreira CH, Freire DF (2009) Injuries caused by Veress needle insertion for creation of pneumoperitoneum: a systematic literature review. Surg Endosc 23:1428–1432

    Article  PubMed  Google Scholar 

  12. Decailliot F, Streich B, Heurtematte Y, Duvaldestin P, Cherqui D, Stéphan F (2005) Hemodynamic effects of portal triad clamping with and without pneumoperitoneum: an echocardiographic study. Anesth Analg 100:617–622

    Article  PubMed  Google Scholar 

  13. Sánchez-Margallo FM, Moyano-Cuevas JL, Latorre R, Maestre J, Correa L, Pagador JB, Sánchez-Peralta LF, Sánchez-Margallo JA, Usón-Gargallo J (2011) Anatomical changes due to pneumoperitoneum analyzed by MRI: an experimental study in pigs. Surg Radiol Anat 33:389–396

    Article  PubMed  Google Scholar 

  14. Rosenthal RJ, Friedman RL, Kahn AM, Martz J, Thiagarajah S, Cohen D, Shi Q, Nussbaum M (1998) Reasons for intracranial hypertension and hemodynamic instability during acute elevations of intra-abdominal pressure: observations in a large animal model. J Gastrointest Surg 2:415–425

    Article  PubMed  CAS  Google Scholar 

  15. von Hagens G, Tiedemann K, Kriz W (1987) The current potential of plastination. Anat Embryol (Berl) 175:411–421

    Article  Google Scholar 

  16. Sora M-C, Cook P (2007) Epoxy plastination of biological tissue: E12 technique. J Int Soc Plast 22:31–39

    Google Scholar 

  17. Arcelus JI, Caprini JA, Traverso CI, Size G, Hasty JH (1993) The role of elastic compression stockings in prevention of venous dilatation induced by a reverse Trendelenburg position. Phlebology 8:111–115

    Google Scholar 

  18. Moyano-Cuevas JL, Sánchez-Margallo FM, Maestre-Antequera J, Dávila-Gómez L, Pagador JB, Sánchez-Peralta LF, Latorre R (2012) Effects of pneumoperitoneum and body position on the morphology of abdominal vascular structures analyzed in MRI. J Magn Reson Imaging 36(1):177–182

    Article  PubMed  Google Scholar 

  19. Lindberg F, Bergqvist D, Rasmussen I, Haglund U (1997) Hemodynamic changes in the inferior caval vein during pneumoperitoneum. An experimental study in pigs. Surg Endosc 11:431–437

    Article  PubMed  CAS  Google Scholar 

  20. Mertens zur Borg IR, Lim A, Verbrugge SJ, IJzermans JN, Klein J (2004) Effect of intraabdominal pressure elevation and positioning on hemodynamic responses during carbon dioxide pneumoperitoneum for laparoscopic donor nephrectomy: a prospective controlled clinical study. Surg Endosc 18:919–923

    Article  PubMed  CAS  Google Scholar 

  21. Junghans T, Modersohn D, Dörner F, Neudecker J, Haase O, Schwenk W (2006) Systematic evaluation of different approaches for minimizing hemodynamic changes during pneumoperitoneum. Surg Endosc 20:763–769

    Article  PubMed  CAS  Google Scholar 

  22. Ghoshal N, Koch T, Popesko P (eds) (1981) The venous drainage of the domestic animals. W. B. Saunders, Philadelphia

    Google Scholar 

  23. Jorgensen JO, Lalak NJ, North L, Hanel K, Hunt DR, Morris DL (1994) Venous stasis during laparoscopic cholecystectomy. Surg Laparosc Endosc 4:128–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by INNAVLAP (CIT-300100-2007-55) from the Ministerio de Ciencia e Innovación, Spain. This work has also been partially funded by the Junta Extremadura, Consejería de Economía, Comercio e Innovación and European Social Fund (TEC08095).

Disclosures

Drs. E. Párraga, O. López-Albors, F. . Sánchez-Margallo, J. L. Moyano-Cuevas, and R. Latorre have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Latorre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Párraga, E., López-Albors, O., Sánchez-Margallo, F. et al. Effects of pneumoperitoneum and body position on the morphology of the caudal cava vein analyzed by MRI and plastinated sections. Surg Endosc 27, 880–887 (2013). https://doi.org/10.1007/s00464-012-2528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2528-5

Keywords

Navigation