Skip to main content
Log in

Mesna protects splanchnic organs from oxidative stress induced by pneumoperitoneum

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

We investigated the potential beneficial effect of the antioxidant 2-mercaptoethane-sulfonate (mesna) against oxidative stress induced by pneumoperitoneum in splanchnic organs.

Methods

Wistar rats were subjected to either (a) CO2 pneumoperitoneum (15 mmHg for 60 min) (group P), (b) pretreatment with mesna (400 mg/kg, p.o.) followed by pneumoperitoneum with a 180 min interval (group MP), (c) sham operation (group S), or (d) administration of mesna only (group M). Forty-five minutes after desufflation (groups P and MP), 60 + 45 min after the induction of anesthesia (group S), or 180 min after mesna administration (group M), tissue specimens were excised from liver, kidneys, jejunum and stomach. Tissue oxidative state was assessed on the basis of glutathione-to-glutathione disulfide ratio, malondialdehyde concentration , and superoxide dismutase activity.

Results

Pneumoperitoneum deteriorated all the oxidative stress markers in the organs studied. Mesna prevented the occurrence of oxidative stress following pneumoperitoneum in all the organs studied. In the absence of pneumoperitoneum, the administration of mesna caused mild enhancement of the oxidative state of liver, stomach, and kidneys compared to sham controls.

Conclusions

Prophylaxis with mesna prevents oxidative stress induced by pneumoperitoneum in splanchnic organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eleftheriadis E, Kotzampassi K, Papanotas K, Heliadis N, Sarris K (1996) Gut ischemia, oxidative stress, and bacterial translocation in elevated abdominal pressure in rats. World J Surg 20:11–16

    Article  PubMed  CAS  Google Scholar 

  2. Pross M, Schulz HU, Flechsig A, Manger T, Halangk W, Augustin W, Lippert H, Reinheckel T (2000) Oxidative stress in lung tissue induced by CO(2) pneumoperitoneum in the rat. Surg Endosc 14:1180–1184

    Article  PubMed  CAS  Google Scholar 

  3. de Souza AM, Wang CC, Chu CY, Lam PM, Rogers MS (2003) The effect of intra-abdominal pressure on the generation of 8-iso prostaglandin F2alpha during laparoscopy in rabbits. Hum Reprod 18:2181–2188

    Article  PubMed  Google Scholar 

  4. Yilmaz S, Polat C, Kahraman A, Koken T, Arikan Y, Dilek ON, Gokce O (2004) The comparison of the oxidative stress effects of different gases and intra-abdominal pressures in an experimental rat model. J Laparoendosc Adv Surg Tech A 14:165–168

    Article  PubMed  Google Scholar 

  5. Glantzounis GK, Tselepis AD, Tambaki AP, Trikalinos TA, Manataki AD, Galaris DA, Tsimoyiannis EC, Kappas AM (2001) Laparoscopic surgery-induced changes in oxidative stress markers in human plasma. Surg Endosc 15:1315–1319

    Article  PubMed  CAS  Google Scholar 

  6. Polat C, Kahraman A, Yilmaz S, Koken T, Serteser M, Akbulut G, Arikan Y, Dilek ON, Gokce O (2003) A comparison of the oxidative stress response and antioxidant capacity of open and laparoscopic hernia repairs. J Laparoendosc Adv Surg Tech A 13:167–173

    Article  PubMed  CAS  Google Scholar 

  7. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y (1993) Changes in splanchnic blood flow and cardiovascular effects following peritoneal insufflation of carbon dioxide. Surg Endosc 7:420–423

    Article  PubMed  CAS  Google Scholar 

  8. Chiu AW, Chang LS, Birkett DH, Babayan RK (1995) The impact of pneumoperitoneum, pneumoretroperitoneum, and gasless laparoscopy on the systemic and renal hemodynamics. J Am Coll Surg 181:397–406

    PubMed  CAS  Google Scholar 

  9. McDougall EM, Bennett HF, Monk TG, Siegel CL, Li D, McFarland EG, Clayman RV, Sharp T, Rayala HJ, Miller SB, Haacke EM (1997) Functional MR imaging of the porcine kidney: physiologic changes of prolonged pneumoperitoneum. JSLS 1:29–35

    PubMed  CAS  Google Scholar 

  10. Schafer M, Sagesser H, Reichen J, Krahenbuhl L (2001) Alterations in hemodynamics and hepatic and splachnic circulation during laparoscopy in rats. Surg Endosc 15:1197–1201

    Article  PubMed  CAS  Google Scholar 

  11. Yilmaz S, Koken T, Tokyol C, Kahraman A, Akbulut G, Serteser M, Polat C, Gokce C, Gokce O (2003) Can preconditioning reduce laparoscopy-induced tissue injury? Surg Endosc 17:819–824

    Article  PubMed  CAS  Google Scholar 

  12. Yilmaz S, Ates E, Polat C, Koken T, Tokyol C, Akbulut G, Gokce O (2003) Ischemic preconditioning decreases laparoscopy-induced oxidative stress in small intestine. Hepatogastroenterology 50:979–982

    PubMed  CAS  Google Scholar 

  13. Cevrioglu AS, Yilmaz S, Koken T, Tokyol C, Yilmazer M, Fenkci IV (2004) Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats. Hum Reprod 19:2144–2151

    Article  PubMed  Google Scholar 

  14. Ates E, Yilmaz S, Ihtiyar E, Yasar B, Karahuseyinoglu E (2006) Preconditioning-like amelioration of erythropoietin against laparoscopy-induced oxidative injury. Surg Endosc 20:815–819

    Article  PubMed  CAS  Google Scholar 

  15. Cay A, Imamoglu M, Unsal MA, Aydin S, Alver A, Akyol A, Sarihan H (2006) Does anti-oxidant prophylaxis with melatonin prevent adverse outcomes related to increased oxidative stress caused by laparoscopy in experimental rat model? J Surg Res 135:2–8

    Article  PubMed  CAS  Google Scholar 

  16. Dechant KL, Brogden RN, Pilkington T, Faulds D, Ifosfamide/mesna (1991) A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467

  17. Haselberger MB, Schwinghammer TL (1995) Efficacy of mesna for prevention of hemorrhagic cystitis after high-dose cyclophosphamide therapy. Ann Pharmacother 29:918–921

    PubMed  CAS  Google Scholar 

  18. Siu LL, Moore MJ (1998) Use of mesna to prevent ifosfamide-induced urotoxicity. Support Care Cancer 6:144–154

    Article  PubMed  CAS  Google Scholar 

  19. Kabasakal L, Sehirli AO, Cetinel S, Cikler E, Gedik N, Sener G (2004) Mesna (2-mercaptoethane sulfonate) prevents ischemia/reperfusion induced renal oxidative damage in rats. Life Sci 75:2329–2340

    Article  PubMed  CAS  Google Scholar 

  20. Sener G, Sehirli O, Ercan F, Sirvanci S, Gedik N, Kacmaz A (2005) Protective effect of MESNA (2-mercaptoethane sulfonate) against hepatic ischemia/reperfusion injury in rats. Surg Today 35:575–580

    Article  PubMed  CAS  Google Scholar 

  21. Ypsilantis P, Lambropoulou M, Tentes I, Kortsaris A, Papadopoulos N, Simopoulos C (2006) Mesna protects intestinal mucosa from ischemia-reperfusion injury. J Surg Res 134:278–284

    Article  PubMed  CAS  Google Scholar 

  22. Ypsilantis P, Tentes I, Lambropoulou M, Anagnostopoulos K, Papadopoulos N, Kortsaris A, Simopoulos C (2008) Prophylaxis with mesna prevents oxidative stress induced by ischemia-reperfusion in the intestine via inhibition of nuclear factor-κB activation. J Gastroen Hepatol 23:328–335

    Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Bearden JC Jr (1978) Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta 533:525–529

    PubMed  CAS  Google Scholar 

  25. Toyokuni S (1999) Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 49:91–102

    Article  PubMed  CAS  Google Scholar 

  26. Brivida K, Sies H (1994) Non enzymatic antioxidant defense system. In: Frei B (ed) Natural Antioxidants in Human Health and Disease. Academic Press, San Diego, pp 107–128

    Google Scholar 

  27. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26:202–226

    Article  PubMed  Google Scholar 

  28. Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266

    Article  PubMed  CAS  Google Scholar 

  29. Granger DN, Korthuis RJ (1995) Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 57:311–332

    PubMed  CAS  Google Scholar 

  30. Windberger UB, Auer R, Keplinger F, Längle F, Heinze G, Schindl M, Losert UM (1999) The role of intra-abdominal pressure on splanchnic and pulmonary hemodynamic and metabolic changes during carbon dioxide pneumoperitoneum. Gastrointest Endosc 49:84–91

    Article  PubMed  CAS  Google Scholar 

  31. Stofer-Vogel B, Cerny T, Borner M, Lauterburg BH (1993) Oral bioavailability of mesna tablets. Cancer Chemother. Pharmacol 32:78–81

    CAS  Google Scholar 

  32. Gressier B, Cabanis A, Lebegue S, Brunet C, Dine T, Luyckx M, Cazin M, Cazin JC (1994) Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils: comparison in vitro of some thiol-containing drugs. Methods Find Exp Clin Pharmacol 16:9–13

    PubMed  CAS  Google Scholar 

  33. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866

    Article  PubMed  CAS  Google Scholar 

  34. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappa B activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  35. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12:3095–3104

    PubMed  CAS  Google Scholar 

  36. Sen CK, Roy S, Packer L (1996) Involvement of intracellular Ca2+ in oxidant-induced NF-kappa B activation. FEBS Lett 385:58–62

    Article  PubMed  CAS  Google Scholar 

  37. Manna SK, Kuo MT, Aggarwal BB (1999) Overexpression of gamma-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1. Oncogene 18:4371–4382

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Ypsilantis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ypsilantis, P., Tentes, I., Anagnostopoulos, K. et al. Mesna protects splanchnic organs from oxidative stress induced by pneumoperitoneum. Surg Endosc 23, 583–589 (2009). https://doi.org/10.1007/s00464-008-9887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-008-9887-y

Keywords

Navigation