Skip to main content

Advertisement

Log in

Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerine

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Increased intra-abdominal pressure (IAP) (pneumoperitoneum) during laparoscopic surgery may result in adverse effects on kidney function. The mechanisms underlying this phenomenon have not been fully determined.

Objective

The present study was designed to: (1) investigate the effects of incremental increases in IAP on renal function in normal rats and (2) evaluate whether the nitric oxide (NO) system is involved in renal dysfunction characterizing pneumoperitoneum.

Methods

Male rats were organized into two groups. The first group was subjected to IAP of 0 (baseline), 7 or 14 mmHg, over 1 h for each pressure, followed by a deflation period of 60 min (recovery). Two additional groups were pretreated with: (1) non-depressor dose of nitroglycerine (NTG) and (2) nitro-L-arginine-methylester (L-NAME), an NO synthase inhibitor, before applying 14 mmHg for 1 h. Urine flow rate (V), Na+ excretion (UNaV), glomerular filtration rate (GFR), renal plasma flow (RPF), and blood pressure were determined throughout the experiments.

Results

There were no significant changes in V, UNaV, GFR, and RPF during 7 mmHg insufflation. However, significant reductions in these parameters were observed during 14 mmHg: V from 8.49 ± 0.92 to 6.12 ± 0.54 μl/min, UNaV from 1.29 ± 0.28 to 0.39 ± 0.09 μEq/min, and FENa from 0.37 ± 0.11 to 0.27 ± 0.04%. These alterations in excretory functions were associated with a considerable decline in GFR from 1.85 ± 0.09 to 0.88 ± 0.09 ml/min, p < 0.05, (−46.3 ± 5.2% from baseline) and RPF from 8.66 ± 0.62 to 4.33 ± 0.49 ml/min, p < 0.05, (−51.93 ± 5.24% from baseline), without a significant change in mean arterial blood pressure (MAP). When the animals were pretreated with NTG, the adverse effects of pneumoperitoneum on V, UNaV, GFR, and RPF were substantially improved, suggesting that NO system plays a beneficial counter-regulatory role during laparoscopy. In line with this notion, pretreatment with L-NAME remarkably aggravated pneumoperitoneum-induced renal hypoperfusion and dysfunction.

Conclusion

Decreased renal perfusion and function are induced by IAP pressure of 14 mmHg. These adverse effects are probably related to interference with the NO system, and could be partially ameliorated by pretreatment with NTG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abassi ZA, Brodsky S, Karram T, Dobkin I, Winaver J, Hoffman A (2001) Temporal changes in natriuretic and antinatriuretic systems after closure of a large arteriovenous fistula. Cardiovasc Res 3:567–576

    Article  Google Scholar 

  2. Abassi ZA, Gurbanov K, Mulroney SE, Potlog C, Opgenorth TJ, Hoffman A, Haramati A, Winaver J (1997) Impaired nitric oxide-mediated renal vasodilation in rats with experimental heart failure: role of angiotensin II. Circulation 10:3655–3664

    Google Scholar 

  3. Bachmann S, Mundel P (1994) Nitric oxide in the kidney: synthesis, localization and function. Am J Kidney Dis 24:112–129

    PubMed  CAS  Google Scholar 

  4. Bolte SL, Chin LT, Moon TD, D’Alessandro AM, Nakada SY, Becker YT, Hedican SP (2006) Maintaining urine production and early allograft function during laparoscopic donor nephrectomy. Urology 68(4):747–750

    Article  PubMed  Google Scholar 

  5. Borba MR, Lopes RI, Carmona M, Neto BM, Nahas SC, Pereira PR (2005) Effects of enalaprilat on the renin-angiotensin-aldosterone system and on renal function during CO2 pneumoperitoneum. J Endourol 8:1026–1031

    Article  Google Scholar 

  6. Brodsky S, Gurbanov K, Abassi Z, Hoffman A, Ruffolo RR Jr, Feuerstein GZ, Winaver J (1998) Effects of eprosartan on renal function and cardiac hypertrophy in rats with experimental heart failure. Hypertension 32:746–752

    PubMed  CAS  Google Scholar 

  7. Chang DT, Kirsch AJ, Sawczuk IS (1994) Oliguria during laparoscopic surgery. J Endourol 8:349–352

    PubMed  CAS  Google Scholar 

  8. Chiu AW, Azadzoi KM, Hatzichristou DG, Siroky MB, Krane RJ, Babayan RK (1994) Effects of intra-abdominal pressure on renal tissue perfusion during laparoscopy. J Endourol 8:99–103

    PubMed  CAS  Google Scholar 

  9. Chiu AW, Chang LS, Birkett DH, Babayan RK (1996) A porcine model for renal hemodynamic study during laparoscopy. J Surg Res 60:61–68

    Article  PubMed  CAS  Google Scholar 

  10. Cisek LJ, Gobet RM, Peters CA (1998) Pneumoperitoneum produces reversible renal dysfunction in animals with normal and chronically reduced renal function. J Endourol 2:95–100

    Google Scholar 

  11. Demyttenaere SV, Feldman LS, Bergman S, Gholoum S, Moriello C, Unikowsky B, Fraser S, Carli F, Fried GM (2006) Does aggressive hydration reverse the effects of pneumoperitoneum on renal perfusion? Surg Endosc 2:274–280

    Article  Google Scholar 

  12. Demyttenaere S, Feldman LS, Fried GM (2007) Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc 21:152–160

    Article  PubMed  Google Scholar 

  13. Dunn MD, McDougall EM (2000) Renal physiology. Laparoscopic considerations. Urol Clin North Am 4:609–614

    Article  Google Scholar 

  14. Dzau VJ (1987) Renal and circulatory mechanisms in congestive heart failure. Kidney Int 31:1402–1415

    Article  PubMed  CAS  Google Scholar 

  15. Gudmundsson FF, Viste A, Myking OL, Bostad L, Grong K, Svanes K (2003) Role of angiotensin II under prolonged increased intraabdominal pressure (IAP) in pigs. Surg Endosc 17:1092–1097

    Article  PubMed  CAS  Google Scholar 

  16. Hamilton BD, Chow GK, Inman SR, Stowe NT, Winfield HN (1998) Increased intra-abdominal pressure during pneumoperitoneum stimulates endothelin release in a canine model. J Endourol 12:193–197

    Article  PubMed  CAS  Google Scholar 

  17. Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP (1982) Elevated intra-abdominal pressure and renal function. Ann Surg 196:594–597

    Article  PubMed  CAS  Google Scholar 

  18. Hashikura Y, Kawasaki S, Munakata Y, Hashimoto S, Hayashi K, Makuuchi M (1994) Effects of peritoneal insufflation on hepatic and renal blood flow. Surg Endosc 7:759–761

    Article  Google Scholar 

  19. Hazebroek EJ, de Bruin RW, Bouvy ND, Marquet RL, Bonthuis F, Bajema IM, Hayes DP, Ijzermans JN, Bonjer HJ (2003) Long-term impact of pneumoperitoneum used for laparoscopic donor nephrectomy on renal function and histomorphology in donor and recipient rats. Ann Surg 237:351–357

    Article  PubMed  Google Scholar 

  20. Ho HS, Saunders CJ, Gunther RA, Wolfe BM (1995) Effector of hemodynamics during laparoscopy: CO2 absorption or intra-abdominal pressure? J Surg Res 59:497–503

    Article  PubMed  CAS  Google Scholar 

  21. Imig JD, Roman RJ (1992) Nitric oxide modulates vascular tone in preglomerular arterioles. Hypertension 19:770–774

    PubMed  CAS  Google Scholar 

  22. Joris JL, Chiche JD, Canivet JL, Jacquet NJ, Legros JJ, Lamy ML (1998) Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine. J Am Coll Cardiol 32:1389–1396

    Article  PubMed  CAS  Google Scholar 

  23. Junghans T, Bohm B, Grundel K, Schwenk W, Muller JM (1997) Does pneumoperitoneum with different gases, body positions, and intraperitoneal pressures influence renal and hepatic blood flow? Surgery 121:206–211

    Article  PubMed  CAS  Google Scholar 

  24. Kirsch AJ, Hensle TW, Chang DT, Kayton ML, Olsson CA, Sawczuk IS (1994) Renal effects of CO2 insufflation: oliguria and acute renal dysfunction in a rat pneumoperitoneum model. Urology 43:453–459

    Article  PubMed  CAS  Google Scholar 

  25. Koivusalo AM, Kellokumpu I, Scheinin M, Tikkanen I, Halme L, Lindgren L (1996) Randomized comparison of the neuroendocrine response to laparoscopic cholecystectomy using either conventional or abdominal wall lift techniques [see comments]. Br J Surg 83:1532–1536

    Article  PubMed  CAS  Google Scholar 

  26. Kone BC (2004) Nitric oxide synthesis in the kidney: isoforms, biosynthesis, and functions in health. Semin Nephrol. 4:299–315

    Article  CAS  Google Scholar 

  27. Lindberg F, Bergqvist D, Bjorck M, Rasmussen I (2003) Renal hemodynamics during carbon dioxide pneumoperitoneum: an experimental study in pigs. Surg Endosc 17:480–484

    Article  PubMed  CAS  Google Scholar 

  28. Lindström P, Wadström J, Ollerstam A, Johnsson C, Persson AE (2003) Effects of increased intra-abdominal pressure and volume expansion on renal function in the rat. Nephrol Dial Transplant 18:2269–2277

    Article  PubMed  Google Scholar 

  29. London ET, Ho HS, Neuhaus AM, Wolfe BM, Rudich SM, Perez RV (2000) Effect of intravascular volume expansion on renal function during prolonged CO2 pneumoperitoneum. Ann Surg 231:195–201

    Article  PubMed  CAS  Google Scholar 

  30. Mattson DL, Roman RJ, Cowley AW Jr (1992) Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 19:766–769

    PubMed  CAS  Google Scholar 

  31. McDougall EM, Monk TG, Wolf JS Jr, Hicks M, Clayman RV, Gardner S, Humphrey PA, Sharp T, Martin K (1996) The effect of prolonged pneumoperitoneum on renal function in an animal model. J Am Coll Surg 182:317–328

    PubMed  CAS  Google Scholar 

  32. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  33. Nguyen NT, Perez RV, Fleming N, Rivers R, Wolfe BM (2002) Effect of prolonged pneumoperitoneum on intraoperative urine output during laparoscopic gastric bypass, J Am Coll Surg 195:476–483

    Article  PubMed  Google Scholar 

  34. Nishio S, Takeda H, Yokoyama M (1999) Changes in urinary output during laparoscopic adrenalectomy. BJU Int 83:944–947

    Article  PubMed  CAS  Google Scholar 

  35. Nogueira JM, Cangro CB, Fink JC, Schweitzer E, Wiland A, Klassen DK, Gardner J, Flowers J, Jacobs S, Cho E, Philosophe B, Bartlett ST, Weir MR (1999) A comparison of recipient renal outcomes with laparoscopic versus open live donor nephrectomy. Transplantation 67:722–728

    Article  PubMed  CAS  Google Scholar 

  36. Odeberg S, Ljungqvist O, Svenberg T, Sollevi A (1998) Lack of neurohumoral response to pneumoperitoneum for laparoscopic cholecystectomy. Surg Endosc 12:1217–1223

    Article  PubMed  CAS  Google Scholar 

  37. Ratner LE, Hiller J, Sroka M, Weber R, Sikorsky I, Montgomery RA, Kavoussi LR (1997) Laparoscopic live donor nephrectomy removes disincentives to live donation. Transplant Proc 29:3402–3403

    Article  PubMed  CAS  Google Scholar 

  38. Richards WO, Scovill W, Shin B, Reed W (1983) Acute renal failure associated with increased intra-abdominal pressure. Ann Surg 197:183–187

    Article  PubMed  CAS  Google Scholar 

  39. Shuto K, Kitano S, Yoshida T, Bandoh T, Mitarai Y, Kobayashi M (1995) Hemodynamic and arterial blood gas changes during carbon dioxide and helium pneumoperitoneum in pigs. Surg Endosc 11:1173–1178

    Google Scholar 

  40. Smith HW, Finkelstein N, Aliminosa L (1945) The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dogs and men. J Clin Invest 24:388–404

    Article  PubMed  CAS  Google Scholar 

  41. Yilmaz S, Koken T, Tokyol C, Kahraman A, Akbulut G, Serteser M, Polat C, Gokce C, Gokce O (2003) Can preconditioning reduce laparoscopy-induced tissue injury? Surg Endosc 17:819–824

    Article  PubMed  CAS  Google Scholar 

  42. Zacherl J, Thein E, Stangl M, Feussner H, Bock S, Mittlbock M, Erhardt W, Siewert JR (2003) The influence of periarterial papaverine application on intraoperative renal function and blood flow during laparoscopic donor nephrectomy in a pig model. Surg Endosc 17:1231–1236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mrs. Hoda Awad, and Aviva Kaballa for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Abassi.

Additional information

Bishara Bishara and Tony Karram contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishara, B., Karram, T., Khatib, S. et al. Impact of pneumoperitoneum on renal perfusion and excretory function: beneficial effects of nitroglycerine. Surg Endosc 23, 568–576 (2009). https://doi.org/10.1007/s00464-008-9881-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-008-9881-4

Keywords

Navigation