Skip to main content

Advertisement

Log in

Validation of a rodent model of Barrett’s esophagus using quantitative gene expression profiling

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

A rodent model of gastroduodenal–esophageal reflux can result in replacement of squamous esophageal mucosa with intestinal-type columnar mucosa and carcinoma. The validity of this model is debated, as it is unproven whether this mucosa is intestinal metaplasia due to reflux or represents migration of adjacent jejunal mucosa above the anastomosis. The aim of this study was to evaluate the esophageal intestinal-type mucosa in these animals by measuring expression of trefoil factor genes (TFF-1, -2, -3) and comparing it with adjacent jejunum in order to determine its etiology.

Methods

Twenty-five rats underwent esophagojejunostomy at the ligament of Treitz to induce reflux of gastric and duodenal contents. The animals were sacrificed at 16 weeks (n = 14) and 30 weeks (n = 11). After sacrifice, the distal esophagus, jejunum, and colon were obtained. RNA was isolated, reverse transcribed, and messenger RNA (mRNA) expression of TFF-1, -2, and -3 was measured with real-time polymerase chain reaction (PCR). Linear discriminant analysis classified samples based on gene expression.

Results

Esophageal intestinal-type mucosa was present at sacrifice in 18 animals. Compared to jejunum, the expression of TFF-1 and TFF-2 mRNA in the intestinal mucosa of the distal esophagus was increased (p = 0.0007 and p < 0.0001, respectively). Expression of TFF-3 was also increased in esophageal intestinal mucosa compared with jejunum (p = 0.0002), but there was significant overlap in expression between these tissues for this gene. Linear discriminant analysis misclassified esophageal intestinal-type mucosa as jejunum in only one case. In no cases was jejunum misclassified as esophageal intestinal-type mucosa.

Conclusion

The gene expression profile of esophageal intestinal-type mucosa following surgically induced reflux in a rodent model indicates that this represents intestinal metaplasia, not proximal migration of jejunum. This validates this model for studying the pathogenesis of Barrett’s esophagus. Use of this model has potential for assessment of the impact of various therapies on the natural history of reflux disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pohl H, Welch HG (2005) The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 97(2):142–146

    Article  PubMed  Google Scholar 

  2. Kubo A, Corley DA (2004) Marked multi-ethnic variation of esophageal and gastric cardia carcinomas within the United States. Am J Gastroenterol 99(4):582–588

    Article  PubMed  Google Scholar 

  3. van Blankenstein M, Looman CWN, Johnston BJ, Caygill CPJ (2005) Age and sex distribution of the prevalence of Barrett’s esophagus found in a primary referral endoscopy center. Am J Gastroenterol 100(3):568–576

    Article  PubMed  Google Scholar 

  4. van Soest EM, Dieleman JP, Siersema PD et al (2005) Increasing incidence of Barrett’s oesophagus in the general population. Gut 54(8):1062–1066

    Article  PubMed  Google Scholar 

  5. Oberg S, Johansson J, Wenner J, Walther B (2002) Metaplastic columnar mucosa in the cervical esophagus after esophagectomy. Ann Surg 235(3):338–345

    Article  PubMed  Google Scholar 

  6. Theisen J, Nigro JJ, DeMeester TR et al (2004) Chronology of the Barrett’s metaplasia-dysplasia-carcinoma sequence. Dis Esophag 17(1):67–70

    Article  CAS  Google Scholar 

  7. Miwa K, Sahara H, Segawa M et al (1996) Reflux of duodenal or gastro-duodenal contents induces esophageal carcinoma in rats. Int J Cancer 67(2):269–274

    Article  PubMed  CAS  Google Scholar 

  8. Attwood SE, Smyrk TC, DeMeester TR et al (1992) Duodenoesophageal reflux and the development of esophageal adenocarcinoma in rats. Surgery 111(5):503–510

    PubMed  CAS  Google Scholar 

  9. Ireland AP, Peters JH, Smyrk TC et al (1996) Gastric juice protects against the development of esophageal adenocarcinoma in the rat. Ann Surg 224(3):358–370, discussion 370–371

    Article  PubMed  CAS  Google Scholar 

  10. Fein M, Peters JH, Chandrasoma P et al (1998) Duodenoesophageal reflux induces esophageal adenocarcinoma without exogenous carcinogen. J Gastrointest Surg 2(3):260–268

    Article  PubMed  CAS  Google Scholar 

  11. Nishijima K, Miwa K, Miyashita T et al (2004) Impact of the biliary diversion procedure on carcinogenesis in Barrett’s esophagus surgically induced by duodenoesophageal reflux in rats. Ann Surg 240(1):57–67

    Article  PubMed  Google Scholar 

  12. Fein M, Ireland AP, Ritter MP, Peters JH, Hagen JA, Bremner CB, DeMeester TR (1997) Duodenogastric reflux potentiates the injurious effects of gastroesophageal reflux. J Gastrointest Surg 1:27–33

    Article  PubMed  CAS  Google Scholar 

  13. Sato T, Miwa K, Sahara H et al (2002) The sequential model of Barrett’s esophagus and adenocarcinoma induced by duodeno-esophageal reflux without exogenous carcinogens. Anticancer Res 22(1A):39–44

    PubMed  Google Scholar 

  14. Goldstein SR, Yang GY, Curtis SK et al (1997) Development of esophageal metaplasia and adenocarcinoma in a rat surgical model without the use of a carcinogen. Carcinogenesis 18(11):2265–2270

    Article  PubMed  CAS  Google Scholar 

  15. Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278(5342):1481,1483

    Google Scholar 

  16. Vallbohmer D, Peters JH, Oh D et al (2005) Survivin, a potential biomarker in the development of Barrett’s adenocarcinoma. Surgery 138(4):701–706, discussion 706–707

    Article  PubMed  Google Scholar 

  17. Levrat M, Lambert R, Kirshbaum G (1962) Esophagitis produced by reflux of duodenal contents in rats. Am J Dig Dis 7(6):564–573

    Article  PubMed  CAS  Google Scholar 

  18. Mirvish SS, Huang Q, Chen SC et al (1993) Metabolism of carcinogenic nitrosamines in the rat and human esophagus and induction of esophageal adenocarcinoma in rats. Endoscopy 25(9):627–631

    Article  PubMed  CAS  Google Scholar 

  19. Clark GW, Smyrk TC, Mirvish SS et al (1994) Effect of gastroduodenal juice and dietary fat on the development of Barrett’s esophagus and esophageal neoplasia: an experimental rat model. Ann Surg Oncol 1(3):252–261

    Article  PubMed  CAS  Google Scholar 

  20. Oberg S, Lord RV, Peters JH et al (2000) Is adenocarcinoma following esophagoduodenostomy without carcinogen in the rat reflux-induced? J Surg Res 91(2):111–117

    Article  PubMed  CAS  Google Scholar 

  21. Pera M, Pera M (2002) Experimental Barrett’s esophagus and the origin of intestinal metaplasia. Chest Surg Clin North Am 12(1):25–37

    Article  Google Scholar 

  22. Kumagai H, Mukaisho K, Sugihara H et al (2003) Cell kinetic study on histogenesis of Barrett’s esophagus using rat reflux model. Scand J Gastroenterol 38(7):687–692

    Article  PubMed  CAS  Google Scholar 

  23. Buskens CJ, Hulscher JBF, van Gulik TM et al (2006) Histopathologic evaluation of an animal model for Barrett’s esophagus and adenocarcinoma of the distal esophagus. J Surg Res 135(2):337–344

    Article  PubMed  CAS  Google Scholar 

  24. Warson C, Van De Bovenkamp JHB, Korteland-Van Male AM et al (2002) Barrett’s esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Human Pathol 33(6):660–668

    Article  CAS  Google Scholar 

  25. DeMeester SR, DeMeester TR (2000) Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg 231(3):303–321

    Article  PubMed  CAS  Google Scholar 

  26. Oh DS, Hagen JA, Fein M et al (2006) Impact of reflux composition on mucosal injury and esophageal function. J Gastrointest Surg 10(6):787–797

    Article  PubMed  Google Scholar 

  27. Campos GM, DeMeester SR, Peters JH et al (2001) Predictive factors of Barrett esophagus: multivariate analysis of 502 patients with gastroesophageal reflux disease. Arch Surg 136(11):1267–1273

    Article  PubMed  CAS  Google Scholar 

  28. Barley NF, Taylor V, Shaw-Smith CJ et al (2003) Human ileal bile acid-binding protein promoter and the effects of CDX2. Biochim Biophys Acta 1630(2–3):138–143

    PubMed  CAS  Google Scholar 

  29. Kazumori H, Ishihara S, Rumi MAK et al (2006) Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55(1):16–25

    Article  PubMed  CAS  Google Scholar 

  30. Hu Y, Williams VA, Gellersen O et al (2007) The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg 11(7):827–834

    Article  PubMed  Google Scholar 

  31. Hu Y, Jones C, Gellersen O et al (2007) Pathogenesis of Barrett esophagus: deoxycholic acid up-regulates goblet-specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 142(6):540–544, discussion 544–545

    Article  PubMed  CAS  Google Scholar 

  32. Shimada H, Koike T, Yamagata M, Yoneda M, Hiraishi H (2007) Regulation of TFF3 expression by homeodomain protein CDX2. Regulat Peptides 140:81–87

    Article  CAS  Google Scholar 

  33. Baus-Loncar M, Giraud AS (2005) Multiple regulatory pathways for trefoil factor (TFF) genes. Cell Molec Life Sci 62(24):2921–2931

    Article  PubMed  CAS  Google Scholar 

  34. Emami S, Rodrigues S, Rodrigue CM et al (2004) Trefoil factor family (TFF) peptides and cancer progression. Peptides 25(5):885–898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by a SAGES Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. DeMeester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, D.S., DeMeester, S.R., Dunst, C.M. et al. Validation of a rodent model of Barrett’s esophagus using quantitative gene expression profiling. Surg Endosc 23, 1346–1352 (2009). https://doi.org/10.1007/s00464-008-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-008-0169-5

Keywords

Navigation