Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35

Abstract

Background

Type 2 diabetes mellitus (T2DM) is a common disease with numerous complications. Bariatric surgery is an efficient procedure for controlling T2DM in morbidly obese patients. In T2DM, the incretin effect is either greatly impaired or absent. This study aimed to evaluate the preliminary results from interposing a segment of ileum into the proximal jejunum associated with a sleeve or diverted sleeve gastrectomy to control T2DM in patients with a body mass index (BMI) less than 35 kg/m2.

Methods

For this study, 39 patients (16 women and 23 men) underwent two laparoscopic procedures comprising different combinations of ileal interposition into the proximal jejunum via a sleeve or diverted sleeve gastrectomy. The mean age of these patients was 50.3 years (range, 36–66 years). The mean BMI was 30.1 kg/m2 (range, 23.4–34.9 kg/m2). All the patients had a diagnosis of T2DM that had persisted for at least 3 years and evidence of stable treatment with oral hypoglycemic agents or insulin for at least 12 months. The mean duration of T2DM was 9.3 years (range, 3–22 years).

Results

The mean operative time was 185 min, and the median hospital stay was 4.3 days. Four major complications occurred in the short term (30-days), and the mortality rate was 2.6%. The mean postoperative follow-up period was 7 months (range, 4–16 months), and the mean percentage of weight loss was 22%. The mean postoperative BMI was 24.9 kg/m2 (range, 18.9–31.7 kg/m2). An adequate glycemic control was achieved for 86.9% of the patients, and 13.1% had important improvement. The patients whose glycemia was not normalized were using a single oral hypoglycemic agent. No patient needed insulin therapy postoperatively. All the patients except experienced normalization of their cholesterol levels. Targeted triglycerides levels were achieved by 71% of the patients, and hypertension was controlled for 95.8%.

Conclusions

The laparoscopic ileal interposition via either a sleeve gastrectomy or diverted sleeve gastrectomy seems to be a promising procedure for the control of T2DM and the metabolic syndrome. A longer follow-up period is needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    American Diabetes Association (2004) Prevention or delay of type 2 diabetes. Diabetes Care 27(Suppl 1):S47–S53

    Google Scholar 

  2. 2.

    Singh BM, Jackson DM, Wills R, Davies J, Wise PH (1992) Delayed diagnosis of non–insulin-dependent diabetes. Br Med J 304:1154–1155

    CAS  Article  Google Scholar 

  3. 3.

    Olefsky J, Nolan J (1995) Insulin resistance and non–insulin-dependent diabetes mellitus: cellular and molecular mechanisms. Am J Clin Nutr 61:980S–986S

    PubMed  CAS  Google Scholar 

  4. 4.

    Arner P, Pollare T, Lithell H (1991) Different aetiologies of type 2 (non–insulin-dependent) diabetes mellitus in obese and nonobese subjects. Diabetologia 34:483–487

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Gerich JE (2000) Insulin resistance is not necessarily an essential component of type 2 diabetes. J Clin Endocrinol Metab 85:2113–2115

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Vilsboll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S Hansen T, Pedersen O, Holst JJ (2003) The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide regardless of etiology and phenotype. J Clin Endocrinol Metab 88:4897–4903

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Luzi L, DeFronzo RA (1989) Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 257:E241–E246

    PubMed  CAS  Google Scholar 

  8. 8.

    Vilsboll T, Holst JJ (2004) Incretins, insulin secretion, and type 2 diabetes mellitus. Diabetologia 47:357–366

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Zander M, Madsbad S, Madsen JL, Hoslt JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta cell function in type 2 diabetes: a parallel-group study. Lancet 359:824–830

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Watts NB, Spanheimer RG, DiGirolamo M, Gebhart SS, Musey VC, Siddiq YK, Phillips LS (1990) Prediction of glucose response to weight loss in patients with non–insulin-dependent diabetes mellitus. Arch Intern Med 151:198–201

    Google Scholar 

  11. 11.

    United Kingdom Prospective Diabetes Study 13 (1995) Relative efficacy of randomly allocated diet, sulfonylurea, insulin, or metformin in patients with newly diagnosed non–insulin-dependent diabetes followed for three years. BMJ 310:83–88

    Google Scholar 

  12. 12.

    Hickey MS, Pories WJ, MacDonald KG Jr, Cory KA, Dohm GL, Swanson MS, Israel RG, Barakat HA, Considine RV, Caro JF, Houmard JA (1998) A new paradigm for type 2 diabetes mellitus? could it be a disease of the foregut? Ann Surg 227:637–644

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Greenway SE, Greenway FL, Klein S (2002) Effects of obesity surgery on non–insulin-dependent diabetes mellitus. Arch Surg 137:1109–1117

    PubMed  Article  Google Scholar 

  14. 14.

    Pinkney J, Kerrigan D (2004) Current status of bariatric surgery in the treatment of type 2 diabetes. Obesity Rev 5:69–78

    Article  CAS  Google Scholar 

  15. 15.

    Patriti A, Facchiano E, Sanna A, Gulla N, Donini A (2004) The enteroinsular axis and the recovery from type II diabetes after bariatric surgery. Obesity 14:840–848

    Article  Google Scholar 

  16. 16.

    Gumbs AA, Modlin IM, Ballantyne GH (2005) Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes Surg 15:462–473

    PubMed  Article  Google Scholar 

  17. 17.

    Pories WJ (2002) Why does the gastric bypass control type 2 diabetes mellitus? Obes Surg 2:303–313

    Article  Google Scholar 

  18. 18.

    Rubino F, Gagner M (2002) Potential of surgery for curing type 2 diabetes mellitus. Ann Surg 236:554–559

    PubMed  Article  Google Scholar 

  19. 19.

    Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS (2005) Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg 15:474–481

    PubMed  Article  Google Scholar 

  20. 20.

    Clements RH, Gonzalez QH, Long CI, Wittert G, Laws HL (2004) Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type 2 diabetes mellitus. Am Surg 70:1–5

    PubMed  Google Scholar 

  21. 21.

    Mason EE (2005) The mechanisms of surgical treatment of type 2 diabetes. Obes Surg 15:459–461

    PubMed  Article  Google Scholar 

  22. 22.

    Naslund E, Backman L, Holst JJ, Theodorsson E, Hellstrom PM (1998) Importance of small bowel peptides for the improved glucose metabolism 20 years after jejunoileal bypass for obesity. Obes Surg 8:253–260

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Mason EE (1999) Ilial transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 9:223–228

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, Donini A (2005) Early improvement of glucose tolerance after ileal transposition in a nonobese type 2 diabetes rat model. Obes Surg 15:1258–1264

    PubMed  Article  Google Scholar 

  25. 25.

    De Paula AL, Macedo ALV, Prudente A, Silva L, Schraibman V, Neto JG, Pinus J, Cury EK, Szajnbok P, Dario RPD, Bertocco L, Diniz K, Gaudêncio J, Gebin L, D’Orto U, Císon D, Penhavel F (2005). Neuroendocrine brake for the treatment of morbid obesity: preliminary report. Einstein 3:110–114

    Google Scholar 

  26. 26.

    American Diabetes Association (2006) Standards of medical care in diabetes: position statement. Diabetes Care 29(Suppl.1):S4–S42

    Google Scholar 

  27. 27.

    Vilsboll T (2004) On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of type 2 diabetes mellitus. Dan Med Bull 51:364–370

    PubMed  CAS  Google Scholar 

  28. 28.

    Rask E, Olsson T, Soderberg S, Holst J.J., Tura A, Pacini G, Ahrén B (2004) Insulin secretion and incretin hormones after oral glucose in nonobese subjects with impaired glucose tolerance. Metabolism 53:624–631

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Meier JJ, Nauck MA (2005) Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev 21:91–117

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bedno S (2003) Weight loss in diabetes management. Nutr Clin Care 6:62–72

    PubMed  Google Scholar 

  31. 31.

    Swinburn B (1993) Effects of dietary lipid on insulin action. Ann N Y Acad Sci 683:102–109

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Pories WJ, Swanson MS, MacDonald K, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, Dohm L (1995) Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 222:339–352

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Rubino F, Forgione A, Cummings DE, Vix M., Gnuli D, Mingrone G, Castagnet M, Marescaux J (2006) The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 244:741–749

    PubMed  Article  Google Scholar 

  34. 34.

    Gault VA, Irwin N, Green BD, McCluskey JT, Greer B, Bailey CJ, Harriott P, O’Harte FPM, Flatt PR (2005) Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3) GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54:2436–2446

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Dixon JB, O’Brien PE (2002) Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care 25:358–363

    PubMed  Article  Google Scholar 

  36. 36.

    Schauer PR, Burguesa B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D (2003) Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg 238:467–485

    PubMed  Google Scholar 

  37. 37.

    Scopinaro N, Gianetta E, Adami GF, Friedman D, Traverso E, Marinari GM, Cuneo S, Vitale B, Ballari F, Colombini M, Baschieri G, Bachi V (1996) Biliopancreatic diversion for obesity at eighteen years. Surgery 119:261–268

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    de Paula AL, Macedo AL, Prudente AS, Queiroz L, Schraibman V, Pinus J (2006) Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”): pilot study of a new operation. Surg Obes Relat Dis. 2:464–467

    PubMed  Article  Google Scholar 

  39. 39.

    Burcelin R (2005) The incretins: a link betwwen nutrients and well-being. Br J Nutr 93:S147–S156

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Zhou H, Yamada Y, Tsukiyama K, Miyawaki K, Hosokawa M, Nagashima K, Toyoda K, Naitoh R, Mizunoya W, Fushiki T, Kadowaki T, Seino Y (2005) Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action. Biochem Biophys Res Commun 335:937–942

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS38. BMJ 317:703–713

    Google Scholar 

  42. 42.

    Sugerman HJ, Wolfe LG, Sica DA, Clore JN (2003) Diabetes and hypertension in severe obesity and effects of gastric bypass–induced weight Loss. Ann Surg 237:751–758

    PubMed  Article  Google Scholar 

  43. 43.

    Tsuchiya T, Kalogeris TJ, Tso P (1996) Ileal transposition into the upper jejunum affects lipid and bile salt absorption in rats. Am J Physiol 271:G681–G691

    PubMed  CAS  Google Scholar 

  44. 44.

    Lindholm LD, Ibsen H, Dahlof B, Devereux RB, Beever G, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Kristiansson K, Kederballe-Pedersen O, Niemine MS, Omvik P, Oparil S, Wedel H, Aurup P, Edelman J, Snapin S (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan intervention for end point reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 359:1004–1010

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Garg JP, Bakris GL (2002) Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease. Vasc Med 7:35–43

    PubMed  Article  Google Scholar 

  46. 46.

    The Diabetes Control, Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl Med 329:977–986

    Article  Google Scholar 

  47. 47.

    Service GJ, Thompson GB, Service J, Andrews JC, Collazo-Clavell ML, Lloyd RV (2005) Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 353:249–254

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. DePaula.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DePaula, A.L., Macedo, A.L.V., Rassi, N. et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc 22, 706–716 (2008). https://doi.org/10.1007/s00464-007-9472-9

Download citation

Keywords

  • Arterial hypertension
  • Dyslipidemia
  • Ileal interposition
  • Neuroendocrine brake
  • Sleeve gastrectomy
  • Type 2 diabetes mellitus