Skip to main content

Advertisement

Log in

Effect of reactive oxygen species scavengers, antiinflammatory drugs, and calcium-channel blockers on carbon dioxide pneumoperitoneum-enhanced adhesions in a laparoscopic mouse model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Postoperative adhesions are a clinical problem. They can cause female infertility, intestinal obstruction, chronic pelvic pain, and difficulties at the time of reoperation. A variety of approaches described to prevent adhesions have shown variable and inconsistent results. Therefore, this study aimed to evaluate most known substances in a laparoscopic mouse model to obtain quantitative and comprehensive information on adhesion prevention. Specifically, this first study aimed to investigate the effects of reactive oxygen species (ROS) scavengers, antiinflammatory agents, and a calcium-channel blocker on pneumoperitoneum-enhanced adhesions.

Methods

Adhesions were induced during laparoscopy in BALB/c female mice by creation of a bipolar lesion. Carbon dioxide (CO2) pneumoperitoneum was maintained for 60 min using humidified CO2. Six experiments were conducted to evaluate the effects of ROS scavengers (superoxide dismutase [SOD], catalase, melatonin, and ascorbic acid), antiinflammatory agents (dexamethasone, tenoxicam, ibuprofen, parecoxib, nimesulide, anti–tumor necrosis factor [TNF]-alpha), and a calcium-channel blocker (diltiazem). Adhesions were scored after 7 days during laparotomy.

Results

Adhesions were reduced by SOD (p < 0.01, proc general linear methods (GLM) of experiments 1 and 2), diltiazem (p = 0.05, Wilcoxon), and dexamethasone (p < 0.03), but not by nonsteroidal antiinflammatory drugs (NSAIDs) nor by anti–TNF-alpha. When all the experiments were grouped for analysis, adhesions also decreased with one and three doses of SOD (p < 0.01 and p < 0.01, respectively) and with one and three doses of ascorbic acid (p < 0.02 and p = 0.05, respectively).

Conclusions

These experiments confirm that SOD, diltiazem, and dexamethasone can decrease adhesion formation. The absence of effect from the other antiinflammatory drugs and anti-TNF-alpha is surprising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Ellis H (1997) The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl 577: 5–9

    PubMed  Google Scholar 

  2. Duffy DM, diZerega GS (1996) Adhesion controversies: pelvic pain as a cause of adhesions, crystalloids in preventing them. J Reprod Med 41: 19–26

    PubMed  CAS  Google Scholar 

  3. Drake TS, Grunert GM (1980) The unsuspected pelvic factor in the infertility investigation. Fertil Steril 34: 27–31

    PubMed  CAS  Google Scholar 

  4. Zhang YD, Yao W, Wu CX, Chi QM, Zhang JY, Li M (2002) Tropical application of halcinonide cream reduces the severity and incidence of intraperitoneal adhesions in a rat model. Am J Surg 184: 74–77

    Article  PubMed  CAS  Google Scholar 

  5. Cohen BM, Heyman T, Mast D (1983) Use of intraperitoneal solutions for preventing pelvic adhesions in the rat. J Reprod Med 28: 649–653

    PubMed  CAS  Google Scholar 

  6. Siegler AM, Kontopoulos V, Wang CF (1980) Prevention of postoperative adhesions in rabbits with ibuprofen, a nonsteroidal anti-inflammatory agent. Fertil Steril 34: 46–49

    PubMed  CAS  Google Scholar 

  7. Luciano AA, Hauser KS, Benda J (1983) Evaluation of commonly used adjuvants in the prevention of postoperative adhesions. Am J Obstet Gynecol 46: 88–92

    Google Scholar 

  8. Aldemir M, Ozturk H, Erten C, Buyukbayram H (2004) The preventive effect of Rofecoxib in postoperative intraperitoneal adhesions. Acta Chir Belg 104: 97–100

    PubMed  CAS  Google Scholar 

  9. Guvenal T, Cetin A, Ozdemir H, Yanar O, Kaya T (2001) Prevention of postoperative adhesion formation in rat uterine horn model by nimesulide: a selective COX-2 inhibitor. Hum Reprod 16: 1732–1735

    Article  PubMed  CAS  Google Scholar 

  10. Celebioglu B, Eslambouli NR, Olcay E, Atakan S (1999) The effect of tenoxicam on intraperitoneal adhesions and prostaglandin E2 levels in mice. Anesth Analg 88: 939–942

    Article  PubMed  CAS  Google Scholar 

  11. Golan A, Bernstein T, Wexler S, Neuman M, Bukovsky I, David MP (1991) The effect of prostaglandins and aspirin—an inhibitor of prostaglandin synthesis—on adhesion formation in rats. Hum Reprod 6: 251–254

    PubMed  CAS  Google Scholar 

  12. DeSimone JM, Meguid MM, Kurzer M, Westervelt J (1988) Indomethacin decreases carrageenan-induced peritoneal adhesions. Surgery 104: 788–795

    PubMed  CAS  Google Scholar 

  13. Tayyar M, Basbug M (1999) The effects of intraperitoneal piroxicam and low-molecular-weight heparin in prevention of adhesion reformation in rat uterine horn. Res Exp Med (Berlin) 198: 269–275

    Article  CAS  Google Scholar 

  14. Nishimura K, Nakamura RM, diZerega GS (1983) Biochemical evaluation of postsurgical wound repair: prevention of intraperitoneal adhesion formation with ibuprofen. J Surg Res 34: 219–226

    Article  PubMed  CAS  Google Scholar 

  15. Nishimura K, Nakamura RM, diZerega GS (1984) Ibuprofen inhibition of postsurgical adhesion formation: a time and dose response biochemical evaluation in rabbits. J Surg Res 36: 115–124

    Article  PubMed  CAS  Google Scholar 

  16. De Leon FD, Odom J, Hudkins P, Vijayakumar R, Heine MW (1986) Orally and parenterally administered ibuprofen for postoperative adhesion prevention. J Reprod Med 31: 1014–1016

    PubMed  Google Scholar 

  17. Wiseman DM, Huang WJ, Johns DB, Rodgers KE, diZerega GS (1994) Time-dependent effect of tolmetin sodium in a rabbit uterine adhesion model. J Invest Surg 7: 527–532

    PubMed  CAS  Google Scholar 

  18. Rodgers K, Girgis W, diZerega GS, Bracken K, Richer L (1990) Inhibition of postsurgical adhesions by liposomes containing nonsteroidal antiinflammatory drugs. Int J Fertil 35: 315–320

    PubMed  CAS  Google Scholar 

  19. Rodgers K, Girgis W, diZerega GS, Johns DB (1990) Intraperitoneal tolmetin prevents postsurgical adhesion formation in rabbits. Int J Fertil 35: 40–45

    PubMed  CAS  Google Scholar 

  20. Hellebrekers BW, Trimbos-Kemper TC, Trimbos JB, Emeis JJ, Kooistra T (2000) Use of fibrinolytic agents in the prevention of postoperative adhesion formation. Fertil Steril 74: 203–212

    Article  PubMed  CAS  Google Scholar 

  21. Muller SA, Treutner KH, Tietze L, Jansen M, Anurov M, Titkova S, Oettinger AP, Schumpelick V (2002) Influence of early drainage of intraperitoneal phospholipids on efficacy of adhesion prevention. J Invest Surg 15: 23–28

    Article  PubMed  Google Scholar 

  22. Muller SA, Treutner KH, Jorn H, Anurov M, Oettinger AP, Schumpelick V (2002) Phospholipids reduce adhesion formation in the rabbit uterine horn model. Fertil Steril 77: 1269–1273

    Article  PubMed  Google Scholar 

  23. Muller SA, Treutner KH, Anurov M, Titkova S, Oettinger AP, Schumpelick V (2003) Experimental evaluation of phospholipids and icodextrin in re-formation of peritoneal adhesions. Br J Surg 90: 1604–1607

    Article  PubMed  CAS  Google Scholar 

  24. Ar’Rajab A, Ahren B, Rozga J, Bengmark S (1991) Phosphatidylcholine prevents postoperative peritoneal adhesions: an experimental study in the rat. J Surg Res 50: 212–215

    Article  PubMed  CAS  Google Scholar 

  25. Ar’Rajab A, Snoj M, Larsson K, Bengmark S (1995) Exogenous phospholipid reduces postoperative peritoneal adhesions in rats. Eur J Surg 161: 341–344

    PubMed  CAS  Google Scholar 

  26. Ustun C, Kocak I, Akpolat I (2000) Effects of Seprafilm (sodium hyaluranate-based bioresorbable), Sepracoat (0.4% hyaluronic acid), and Ringer’s lactate on the prevention of postsurgical adhesion formation in rat models. J Obstet Gynaecol 20: 78–80

    Article  PubMed  CAS  Google Scholar 

  27. Harris ES, Morgan RF, Rodeheaver GT (1995) Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery 117: 663–669

    Article  PubMed  CAS  Google Scholar 

  28. Reijnen MM, Skrabut EM, Postma VA, Burns JW, van Goor H (2001) Polyanionic polysaccharides reduce intraabdominal adhesion and abscess formation in a rat peritonitis model. J Surg Res 101: 248–253

    Article  PubMed  CAS  Google Scholar 

  29. Hellebrekers BW, Trimbos-Kemper GC, van Blitterswijk CA, Bakkum EA, Trimbos JB (2000) Effects of five different barrier materials on postsurgical adhesion formation in the rat. Hum Reprod 15: 1358–1363

    Article  PubMed  CAS  Google Scholar 

  30. Eroglu A, Demirci S, Kurtman C, Akbay A, Eroglu N (2001) Prevention of intraabdominal adhesions by using Seprafilm in rats undergoing bowel resection and radiation therapy. Colorectal Dis 3: 33–37

    Article  PubMed  CAS  Google Scholar 

  31. Dunn R, Lyman MD, Edelman PG, Campbell PK (2001) Evaluation of the SprayGel adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril 75: 411–416

    Article  PubMed  CAS  Google Scholar 

  32. Leach RE, Henry RL (1990) Reduction of postoperative adhesions in the rat uterine horn model with poloxamer 407. Am J Obstet Gynecol 162: 1317–1319

    PubMed  CAS  Google Scholar 

  33. Canbaz MA, Ustun C, Kocak I, Yanik FF (1999) The comparison of gonadotropin-releasing hormone agonist therapy and intraperitoneal Ringer’s lactate solution in prevention of postoperative adhesion formation in rat models. Eur J Obstet Gynecol Reprod Biol 82: 219–222

    Article  PubMed  CAS  Google Scholar 

  34. Steinleitner A, Lambert H, Kazensky C, Sanchez I, Sueldo C (1990) Reduction of primary postoperative adhesion formation under calcium-channel blockade in the rabbit. J Surg Res 48: 42–45

    Article  PubMed  CAS  Google Scholar 

  35. Dunn RC, Steinleitner AJ, Lambert H (1991) Synergistic effect of intraperitoneally administered calcium-channel blockade and recombinant tissue plasminogen activator to prevent adhesion formation in an animal model. Am J Obstet Gynecol 164: 1327–1330

    PubMed  CAS  Google Scholar 

  36. Steinleitner A, Lambert H, Montoro L, Kelly E, Swanson J, Sueldo C (1988) The use of calcium-channel blockade for the prevention of postoperative adhesion formation. Fertil Steril 50: 818–821

    PubMed  CAS  Google Scholar 

  37. Steinleitner A, Kazensky C, Lambert H (1989) Calcium-channel blockade prevents postsurgical reformation of adnexal adhesions in rabbits. Obstet Gynecol 74: 796–798

    PubMed  CAS  Google Scholar 

  38. Golan A, Wexler S, Lotan G, Abramov L, Langer R, David MP (1989) Calcium antagonist: effect on adhesion formation. Acta Obstet Gynecol Scand 68: 529–532

    PubMed  CAS  Google Scholar 

  39. Tsimoyiannis EC, Tsimoyiannis JC, Sarros CJ, Akalestos GC, Moutesidou KJ, Lekkas ET, Kotoulas OB (1989) The role of oxygen-derived free radicals in peritoneal adhesion formation induced by ileal ischaemia/reperfusion. Acta Chir Scand 155: 171–174

    PubMed  CAS  Google Scholar 

  40. Tsimoyiannis EC, Lekkas ET, Paizis JB, Boulis SA, Page P, Kotoulas OB (1990) Prevention of peritoneal adhesions in rats with trimetazidine. Acta Chir Scand 156: 771–774

    PubMed  CAS  Google Scholar 

  41. Portz DM, Elkins TE, White R, Warren J, Adadevoh S, Randolph J (1991) Oxygen free radicals and pelvic adhesion formation: I. Blocking oxygen free radical toxicity to prevent adhesion formation in an endometriosis model. Int J Fertil 36: 39–42

    PubMed  CAS  Google Scholar 

  42. Ozcelik B, Serin IS, Basbug M, Uludag S, Narin F, Tayyar M (2003) Effect of melatonin in the prevention of postoperative adhesion formation in a rat uterine horn adhesion model. Hum Reprod 18: 1703–1706

    Article  PubMed  CAS  Google Scholar 

  43. Hemadeh O, Chilukuri S, Bonet V, Hussein S, Chaudry IH (1993) Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E. Surgery 114: 907–910

    PubMed  CAS  Google Scholar 

  44. de la Portilla F, Ynfante I, Bejarano D, Conde J, Fernandez A, Ortega JM, Carranza G (2004) Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E: an experimental study in rats. Dis Colon Rectum 47: 2157–2161

    Article  Google Scholar 

  45. Kagoma P, Burger SN, Seifter E, Levenson SM, Demetriou AA (1985) The effect of vitamin E on experimentally induced peritoneal adhesions in mice. Arch Surg 120: 949–951

    PubMed  CAS  Google Scholar 

  46. Chiang SC, Cheng CH, Moulton KS, Kasznica JM, Moulton SL (2000) TNP-470 inhibits intraabdominal adhesion formation. J Pediatr Surg 35: 189–196

    Article  PubMed  CAS  Google Scholar 

  47. Saltzman AK, Olson TA, Mohanraj D, Carson LF, Ramakrishnan S (1996) Prevention of postoperative adhesions by an antibody to vascular permeability factor/vascular endothelial growth factor in a murine model. Am J Obstet Gynecol 174: 1502–1506

    Article  PubMed  CAS  Google Scholar 

  48. Molinas CR, Binda MM, Carmeliet P, Koninckx PR (2004) Role of vascular endothelial growth factor receptor 1 in basal adhesion formation and in carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in mice. Fertil Steril 82 Suppl 3: 1149–1153

    Article  PubMed  CAS  Google Scholar 

  49. Elkelani OA, Molinas CR, Mynbaev O, Koninckx PR (2002) Prevention of adhesions with crystalloids during laparoscopic surgery in mice. J Am Assoc Gynecol Laparosc 9: 447–452

    Article  PubMed  Google Scholar 

  50. Roman H, Canis M, Kamble M, Botchorishvili R, Pouly JL, Mage G (2005) Efficacy of three adhesion-preventing agents in reducing severe peritoneal trauma induced by bipolar coagulation in a laparoscopic rat model. Fertil Steril 83(Suppl 1): 1113–1118

    Article  PubMed  CAS  Google Scholar 

  51. Detchev R, Bazot M, Soriano D, Darai E (2004) Prevention of de novo adhesion by ferric hyaluronate gel after laparoscopic surgery in an animal model. JSLS 8: 263–268

    PubMed  Google Scholar 

  52. De Iaco PA, Stefanetti M, Pressato D, Piana S, Dona M, Pavesio A, Bovicelli L (1998) A novel hyaluronan-based gel in laparoscopic adhesion prevention: preclinical evaluation in an animal model. Fertil Steril 69: 318–323

    Article  PubMed  Google Scholar 

  53. Ozmen MM, Aslar AK, Terzi MC, Albayrak L, Berberoglu M (2002) Prevention of adhesions by bioresorbable tissue barrier following laparoscopic intraabdominal mesh insertion. Surg Laparosc Endosc Percutan Tech 12: 342–346

    Article  PubMed  Google Scholar 

  54. De Iaco P, Costa A, Mazzoleni G, Pasquinelli G, Bassein L, Marabini A (1994) Fibrin sealant in laparoscopic adhesion prevention in the rabbit uterine horn model. Fertil Steril 62: 400–404

    PubMed  Google Scholar 

  55. Kramer K, Senninger N, Herbst H, Probst W (2002) Effective prevention of adhesions with hyaluronate. Arch Surg 137: 278–282

    Article  PubMed  CAS  Google Scholar 

  56. Mettler L (2003) Pelvic adhesions: laparoscopic approach. Ann N Y Acad Sci 997: 255–268

    Article  PubMed  CAS  Google Scholar 

  57. Vrijland WW, Tseng LN, Eijkman HJ, Hop WC, Jakimowicz JJ, Leguit P, Stassen LP, Swank DJ, Haverlag R, Bonjer HJ, Jeekel H (2002) Fewer intraperitoneal adhesions with use of hyaluronic acid-carboxymethylcellulose membrane: a randomized clinical trial. Ann Surg 235: 193–199

    Article  PubMed  Google Scholar 

  58. Johns DB, Keyport GM, Hoehler F, diZerega GS (2001) Reduction of postsurgical adhesions with Intergel adhesion prevention solution: a multicenter study of safety and efficacy after conservative gynecologic surgery. Fertil Steril 76: 595–604

    Article  PubMed  CAS  Google Scholar 

  59. Thornton MH, Johns DB, Campeau JD, Hoehler F, diZerega GS (1998) Clinical evaluation of 0.5% ferric hyaluronate adhesion prevention gel for the reduction of adhesions following peritoneal cavity surgery: open-label pilot study. Hum Reprod 13: 1480–1485

    Article  PubMed  CAS  Google Scholar 

  60. Lundorff P, van Geldorp H, Tronstad SE, Lalos O, Larsson B, Johns DB, diZerega GS (2001) Reduction of postsurgical adhesions with ferric hyaluronate gel: a European study. Hum Reprod 16: 1982–1988

    Article  PubMed  CAS  Google Scholar 

  61. Diamond MP (1998) Reduction of de novo postsurgical adhesions by intraoperative precoating with Sepracoat (HAL-C) solution: a prospective, randomized, blinded, placebo-controlled multicenter study. The Sepracoat Adhesion Study Group. Fertil Steril 69: 1067–1074

    Article  PubMed  CAS  Google Scholar 

  62. Interceed (TC7) Adhesion Barrier Study Group (1989) Prevention of postsurgical adhesions by Interceed (TC7), an absorbable adhesion barrier: a prospective randomized multicenter clinical study. Fertil Steril 51: 933–938

    Google Scholar 

  63. Franklin RR (1995) Reduction of ovarian adhesions by the use of Interceed. Ovarian Adhesion Study Group. Obstet Gynecol 86: 335–340

    Article  PubMed  CAS  Google Scholar 

  64. Sekiba K (1992) Use of Interceed (TC7) absorbable adhesion barrier to reduce postoperative adhesion reformation in infertility and endometriosis surgery. The Obstetrics and Gynecology Adhesion Prevention Committee. Obstet Gynecol 79: 518–522

    PubMed  CAS  Google Scholar 

  65. Cohen Z, Senagore AJ, Dayton MT, Koruda MJ, Beck DE, Wolff BG, Fleshner PR, Thirlby RC, Ludwig KA, Larach SW, Weiss EG, Bauer JJ, Holmdahl L (2005) Prevention of postoperative abdominal adhesions by a novel, glycerol/sodium hyaluronate/carboxymethylcellulose-based bioresorbable membrane: a prospective, randomized, evaluator-blinded multicenter study. Dis Colon Rectum 48: 1130–1139

    Article  PubMed  Google Scholar 

  66. Keckstein J, Ulrich U, Sasse V, Roth A, Tuttlies F, Karageorgieva E (1996) Reduction of postoperative adhesion formation after laparoscopic ovarian cystectomy. Hum Reprod 11: 579–582

    PubMed  CAS  Google Scholar 

  67. Lundorff P, Donnez J, Korell M, Audebert AJ, Block K, diZerega GS (2005) Clinical evaluation of a viscoelastic gel for reduction of adhesions following gynaecological surgery by laparoscopy in Europe. Hum Reprod 20: 514–520

    Article  PubMed  CAS  Google Scholar 

  68. Pellicano M, Bramante S, Cirillo D, Palomba S, Bifulco G, Zullo F, Nappi C (2003) Effectiveness of autocrosslinked hyaluronic acid gel after laparoscopic myomectomy in infertile patients: a prospective, randomized, controlled study. Fertil Steril 80: 441–444

    Article  PubMed  Google Scholar 

  69. Molinas CR, Koninckx PR (2000) Hypoxaemia induced by CO2 or helium pneumoperitoneum is a cofactor in adhesion formation in rabbits. Hum Reprod 15: 1758–1763

    Article  PubMed  CAS  Google Scholar 

  70. Mynbaev OA, Molinas CR, Adamyan LV, Vanacker B, Koninckx PR (2002) Reduction of CO2-pneumoperitoneum-induced metabolic hypoxaemia by the addition of small amounts of O2 to the CO2 in a rabbit ventilated model: a preliminary study. Hum Reprod 17: 1623–1629

    Article  PubMed  CAS  Google Scholar 

  71. Molinas CR, Campo R, Elkelani OA, Binda MM, Carmeliet P, Koninckx PR (2003) Role of hypoxia-inducible factors 1alpha and 2alpha in basal adhesion formation and in carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. Fertil Steril 80(Suppl 2): 795–802

    Article  PubMed  Google Scholar 

  72. Molinas CR, Campo R, Dewerchin M, Eriksson U, Carmeliet P, Koninckx PR (2003) Role of vascular endothelial growth factor and placental growth factor in basal adhesion formation and in carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. Fertil Steril 80(Suppl 2): 803–811

    Article  PubMed  Google Scholar 

  73. Molinas CR, Elkelani O, Campo R, Luttun A, Carmeliet P, Koninckx PR (2003) Role of the plasminogen system in basal adhesion formation and carbon dioxide pneumoperitoneum-enhanced adhesion formation after laparoscopic surgery in transgenic mice. Fertil Steril 80: 184–192

    Article  PubMed  Google Scholar 

  74. Binda MM, Molinas CR, Mailova K, Koninckx PR (2004) Effect of temperature upon adhesion formation in a laparoscopic mouse model. Hum Reprod 19: 2626–2632

    Article  PubMed  CAS  Google Scholar 

  75. Binda MM, Molinas CR, Hansen P, Koninckx PR (2006) Effect of desiccation and temperature during laparoscopy on adhesion formation in mice. Fertil Steril 86: 166–175

    Article  PubMed  Google Scholar 

  76. Molinas CR, Mynbaev O, Pauwels A, Novak P, Koninckx PR (2001) Peritoneal mesothelial hypoxia during pneumoperitoneum is a cofactor in adhesion formation in a laparoscopic mouse model. Fertil Steril 76: 560–567

    Article  PubMed  CAS  Google Scholar 

  77. Elkelani OA, Binda MM, Molinas CR, Koninckx PR (2004) Effect of adding more than 3% oxygen to carbon dioxide pneumoperitoneum on adhesion formation in a laparoscopic mouse model. Fertil Steril 82: 1616–1622

    Article  PubMed  Google Scholar 

  78. Binda MM, Molinas CR, Koninckx PR (2003) Reactive oxygen species and adhesion formation: clinical implications in adhesion prevention. Hum Reprod 18: 2503–2507

    Article  PubMed  CAS  Google Scholar 

  79. Kukner AS, Kukner A, Naziroglu M, Colakoglu N, Celebi S, Yilmaz T, Aydemir O (2004) Protective effects of intraperitoneal vitamin C, aprotinin, and melatonin administration on retinal edema during experimental uveitis in the guinea pig. Cell Biochem Funct 22: 299–305

    Article  PubMed  Google Scholar 

  80. Jagetia GC, Rajanikant GK, Baliga MS, Rao KV, Kumar P (2004) Augmentation of wound healing by ascorbic acid treatment in mice exposed to gamma-radiation. Int J Radiat Biol 80: 347–354

    Article  PubMed  CAS  Google Scholar 

  81. Tantcheva LP, Stoeva ES, Galabov AS, Braykova AA, Savov VM, Mileva MM (2003) Effect of vitamin E and vitamin C combination on experimental influenza virus infection. Methods Find Exp Clin Pharmacol 25: 259–264

    Article  PubMed  CAS  Google Scholar 

  82. Tsao CS, Leung PY, Young M (1987) Effect of dietary ascorbic acid intake on tissue vitamin C in mice. J Nutr 117: 291–297

    PubMed  CAS  Google Scholar 

  83. Han X, Benight N, Osuntokun B, Loesch K, Frank S, Denson L (2007) Tumour necrosis factor {alpha} blockade induces an antiinflammatory growth hormone–signaling pathway in experimental colitis. Gut 56(1): 73–81

    Article  PubMed  CAS  Google Scholar 

  84. DeWitt CR, Waksman JC (2004) Pharmacology, pathophysiology, and management of calcium-channel blocker and beta-blocker toxicity. Toxicol Rev 23: 223–238

    Article  PubMed  CAS  Google Scholar 

  85. Burke A, Smyth E, FitzGerald GA (2006). Analgesis-antipyretic agents: pharmacotherapy of gout. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman and Gilman’s the pharmacological basic of therapeutics. McGraw-Hill, New York, NY, USA pp 671–715, 1593–1610

    Google Scholar 

  86. Nilsen OG (1994) Clinical pharmacokinetics of tenoxicam. Clin Pharmacokinet 26: 16–43

    Article  PubMed  CAS  Google Scholar 

  87. Bernareggi A (1998) Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet 35: 247–274

    Article  PubMed  CAS  Google Scholar 

  88. Yuan JJ, Yang DC, Zhang JY, Bible R Jr, Karim A, Findlay JW (2002) Disposition of a specific cyclooxygenase-2 inhibitor, valdecoxib, in human. Drug Metab Dispos 30: 1013–1021

    Article  PubMed  CAS  Google Scholar 

  89. Eisenberg MJ, Brox A, Bestawros AN (2004) Calcium-channel blockers: an update. Am J Med 116: 35–43

    Article  PubMed  CAS  Google Scholar 

  90. Sanfilippo JS, Booth RJ, Burns CD (1995) Effect of vitamin E on adhesion formation. J Reprod Med 40: 278–282

    PubMed  CAS  Google Scholar 

  91. Greene AK, Alwayn IP, Nose V, Flynn E, Sampson D, Zurakowski D, Folkman J, Puder M (2005) Prevention of intraabdominal adhesions using the antiangiogenic COX-2 inhibitor celecoxib. Ann Surg 242: 140–146

    Article  PubMed  Google Scholar 

  92. Kaidi AA, Nazzal M, Gurchumelidze T, Ali MA, Dawe EJ, Silva YJ (1995) Preoperative administration of antibodies against tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) and their impact on peritoneal adhesion formation. Am Surg 61: 569–572

    PubMed  CAS  Google Scholar 

  93. Szabo C, Hasko G, Nemeth ZH, Vizi ES (1997) Calcium entry blockers increase interleukin-10 production in endotoxemia. Shock 7: 304–307

    Article  PubMed  CAS  Google Scholar 

  94. Wang QD, Pernow J, Sjoquist PO, Ryden L (2002) Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovasc Res 55: 25–37

    Article  PubMed  CAS  Google Scholar 

  95. Elmslie KS (2004) Calcium-channel blockers in the treatment of disease. J Neurosci Res 75: 733–741

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Pijnenborg, PhD, Ms. R. Van Bree, J. Verguts, MD, L. Ret, MD, C. De Cicco, MD, and L. Vercruysse, MSc (Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg) for their help. This study was supported by Onderzoeks Toelagen Katholieke Universiteit Leuven (Leuven, Belgium grant TBA/00/27) and in part by Karl Storz Endoscopy (Tuttlingen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Binda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binda, M.M., Molinas, C.R., Bastidas, A. et al. Effect of reactive oxygen species scavengers, antiinflammatory drugs, and calcium-channel blockers on carbon dioxide pneumoperitoneum-enhanced adhesions in a laparoscopic mouse model. Surg Endosc 21, 1826–1834 (2007). https://doi.org/10.1007/s00464-007-9296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-007-9296-7

Keywords

Navigation