Skip to main content

Advertisement

Log in

Omentum prevents intestinal adhesions to mesh graft in abdominal infections and serosal defects

  • Original Article
  • Published:
Surgical Endoscopy And Other Interventional Techniques Aims and scope Submit manuscript

Abstract

Background

Many studies have evaluated the use of grafts in the reconstruction of abdominal wall defects. In this study, the effects resulting from the presence or absence of the omentum were evaluated in the setting of infection or serosal defects in the formation of adhesions in abdominal closures using mesh grafts.

Methods

For this study, 60 Wistar albino rats were divided into six groups. A circular 3.79-cm2 fascioperitoneal defect was created. After group-specific procedures, defects were reconstructed using polypropylene mesh grafts. In group C (control group), only a mesh graft recontruction was performed, whereas group O (O for omentectomy) underwent an omentectomy plus mesh closure. In group SD (serosal defect group), the cecum was abrased with a brush before mesh closure. Group SDO underwent cecal abrasion plus an omentectomy. In group I (infection group), the intraabdominal space was filled with 1 ml of solution containing 100,000 colony-forming units (CFUs) of Escherichia coli per milliliter. Group IO received the same same amount of E. coli solution plus an omentectomy before mesh closure. After 28 days, the groups were evaluated by intraabdominal and blood cultures, grading of intraabdominal adhesions, graft–organ adhesions, proportion of adhesions to graft size, and histopathologic studies. The results were statistically evaluated using one-way variant analysis and Scheffe’s and Fisher’s definite chi-square tests.

Results

For the groups in which the greater omentum was preserved, intestinal adhesions to the graft surface were less frequently observed, especially in cases with intraabdominal infections and serosal defects (p < 0.05).

Conclusions

Preservation of the greater omentum reduces the formation of intestinal adhesions, especially in cases with underlying infections and serosal defects in abdominal closures using mesh grafts. This could be beneficial in related clinical situations in lowering the rate of intestinal fistulas, erosions, and obstructions that can be attributed to the formation of adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahrenholz DH, Simmons RL (1980) Fibrin in peritonitis: beneficial and adverse effects of fibrin in experimental E. coli peritonitis. Surgery 88: 41–48

    PubMed  CAS  Google Scholar 

  2. Anderl H, Menardi G, Hager J (1986) Closure of gastroschisis by mesh skin grafts in problem cases. J Ped Surg 21: 870–872

    CAS  Google Scholar 

  3. Baptista ML, Bonsack ME, Delaney JP (2000) Seprafilm reduces adhesions to polypropylen mesh. Surgery 128: 86–92

    Article  PubMed  CAS  Google Scholar 

  4. Bedirli A, Gokahmetoglu S, Sakrak O, Erosoz N, Ayangil D, Esin H (2003) Prevention of intraperitoneal adhesion formation using beta-glucan after ileocolic anostomosis in a rat bacterial peritonitis model. Am J Surg 185: 339–343

    Article  PubMed  CAS  Google Scholar 

  5. Bellon JM, Bujan J, Contreras LA, Carneras-San Martin A, Hernando A, Jurado F (1996) Improvement of the tissue integration of a new modified polytetrafluoroethylene prosthesis mycro mesh. Biomaterials 17: 1265–1271

    Article  PubMed  CAS  Google Scholar 

  6. Bertram P, Tietze L, Hoopmann M, Treatner KH, Mittermayer Ch, Schumpelick V (1999) Intraperitoneal transpalntation of isologous mesothelial cells for prevention of adhesions. Eur J Surg 165: 705–709

    Google Scholar 

  7. Bosscha K, Nieuwenhuijs VB, Gooszen AW, Beumer IIVD, Visser MR, Verweij WRE, Akkermans LMA (2000) A standardised and reproducible model of intraabdominal ınfection and abscess formation in rats. Eur J Surg 166: 963–967

    Article  PubMed  CAS  Google Scholar 

  8. Bothin C, Okada M, Midtvedt T, Perbeck L (2001) The intestinal flora influences adhesion formation around surgical anastomoses. Br J Surg 88: 143–145

    Article  PubMed  CAS  Google Scholar 

  9. Brandt CP, McHenry CR, Jacobs DG, Piotrowski JJ, Priebe PP (1995) Polypropylene mesh closure after emergency laparotomy: morbidity and outcome. Surgery 118: 736–741

    PubMed  CAS  Google Scholar 

  10. Bryant MS, Tepas JJ, Mollitt DL, Talbert JL, String DL (1989) The effect of initial operative repair on the recovary of intestinal function in gastroschisis. Am Surg 55: 209–211

    PubMed  CAS  Google Scholar 

  11. Buckman RF, Buckman D, Hufnagel HV, Gervin AS (1976) A physiologic basis for the adhesion: free healing of deperitonealized surfaces. J Surg Res 21: 67–76

    Article  PubMed  Google Scholar 

  12. Cerise EJ, Busuttil RW, Craighead CC, Ogden WW (1975) The use of mersilen mesh in repair of abdominal wall hernias: a clinical and experimental study. Ann Surg 6: 728–734

    Article  Google Scholar 

  13. Connolly JE, Smith JW (1960) The prevention and treatment of intestinal adhesions. Int Abstract Surg 110: 417–430

    CAS  Google Scholar 

  14. Deutsch AA, Eviatar E, Gutman H, Reiss R (1989) Small bowel obstruction: a review of 264 cases and suggestions for management. Postgrad Med J 65: 463–467

    Article  PubMed  CAS  Google Scholar 

  15. Dinsmore RC, Calton WC (1999). Prevention of adhesions to polypropylen mesh in a rabbit model. Am Surg 65: 383–387

    PubMed  CAS  Google Scholar 

  16. Ellis H (1971). The cause and prevention of postoperative intraperitoneal adhesions. Surg Gyn Obst 133: 497–509

    PubMed  CAS  Google Scholar 

  17. Ellis H (1982) The causes and prevention of intestinal adhesions. Br J Surg 69: 241–243

    PubMed  CAS  Google Scholar 

  18. Gilmore OJA, Reid C (1962) Noxytiolin and peritoneal adhesion formation. Br J Surg 49: 658–660

    Google Scholar 

  19. Granat M, Kaspa IT, Katz EZ, Schenker JG (1983) Reduction of peritoneal adhesion formation by colchicine: a comparative study in the rat. Fertil Steril 40: 369–372

    PubMed  CAS  Google Scholar 

  20. Hau T, Simmons RL (1978) Heparin in the treatment of experimental peritonitis. Ann Surg 187: 294–298

    PubMed  CAS  Google Scholar 

  21. Herslag A, Otternes IG, Bliven ML, Diamond MP, Polan ML (1991) The effect of interleukin-1 on adhesion formation in the rat. Am J Obst Gyn 165: 771–774

    Google Scholar 

  22. Jenkins SD, Klamer TW, Parteka JJ, Condon RE (1983) A comparison of prosthetic materials used to repair abdominal wall defects. Surgery 94: 392–398

    PubMed  CAS  Google Scholar 

  23. Jensen OM, Larsen SB, Astrup T (1969) Fibrinolytic activity in serosal and synovial membranes rats, guinea pigs, and rabbits. Arch Pathol 88: 623–630

    Google Scholar 

  24. Lally KP, Cheu HW, Vazquez D (1993) Prosthetic diafragma reconstruction in the growing animal. J Ped Surg 28: 45–47

    CAS  Google Scholar 

  25. Liebman SM, Langer JC, Marshall JS, Collins SM (1993) Role of mast cells in peritoneal adhesion formation. Am J Surg 165: 127–130

    PubMed  CAS  Google Scholar 

  26. Meddings RN, Carachi R, Gorham S, French DA (1993). A new bioprosthesis in large abdominal wall defects. J Ped Surg 28: 660–663

    Article  CAS  Google Scholar 

  27. Murphy JL, Freeman JB, Dionne PG (1989) Comparison of marlex and Gore-tex to repair abdominal wall defects in the rat. Can Assoc Gen Surg 32: 244–247

    CAS  Google Scholar 

  28. Nagy KK, Fildes JJ, Mahr C, Roberts RR, Krosner SM, Hoseph KT, Barret J (1996) Experience with three prosthetic materials in temporary abdominal wall closure. Am Surg 62: 331–335

    PubMed  CAS  Google Scholar 

  29. Novotny DA, Klein RL, Boeckman CR (1993) Gastroschisis: an 18-year review. J Ped Surg 28: 650–652

    Article  CAS  Google Scholar 

  30. Porter JM, McGregor FH, Mullen DC, Silver D (1969) Fibrinolytic activity of mesothelial surfaces. Surg Forum. 20: 80–82

    PubMed  CAS  Google Scholar 

  31. Rijhwani A, Sen S, Gunasekaran S, Ponnaiva J, Balasubramanian KA, Mammen KE (1995) Allopurinol reduces the severity of peritoneal adhesions in mice. J Ped Surg 30: 533–537

    Article  CAS  Google Scholar 

  32. Ryan GB, Grobety J, Majno G (1971) Postoperative peritoneal adhesions. Am J Pathol 65: 117–148

    PubMed  CAS  Google Scholar 

  33. Shimotsuma M, Takahashi T, Kawata M, Dux K (1991) Cellular subsets of the milky spots in the human greater omentum. Cell Tissue Res 264: 599–601

    Article  PubMed  CAS  Google Scholar 

  34. Szabo A, Haj M, Waxsman I, Eitan A (2000) Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats. Eur Surg Res 32: 125–128

    Article  PubMed  CAS  Google Scholar 

  35. Tito AT(1996) Intestinal obstruction. In: Zuidema GD, Orringer MB, Ritchie WP, Turcotte JG, Condon RE, Nyhus LM (ed) Shackelford’s surgery of the alimentary tract. 4th ed. WB Saunders, Philadelphia pp 387–389

    Google Scholar 

  36. Toosie K, Gallego K, Stabile BE, Schaber B, French S, Virgilio CD (2000) Fibrin glue reduces intraabdominal adhesions to synthetic mesh in a rat ventral hernia model. Am Surg 66: 41–45

    PubMed  CAS  Google Scholar 

  37. Tyrell J, Silberman H, Chandrasoma P, Niland J, Shull J (1989) Absorbable versus permanent mesh in abdominal operations. Surg Gyn Obstet 168: 227–232

    CAS  Google Scholar 

  38. Vural B, Cantürk NH, Esen N, Solakoglu S, Canturk Z, Kirkali G, Sokmensuer C (1999) The role of neutrophils in the formation of peritoneal adhesions. Hum Reprod 14: 49–54

    Article  PubMed  CAS  Google Scholar 

  39. Walker AP, Henderson J, Condon RE (1993) Double-layer prostheses for repair of abdominal wall defects in a rabbit model. J Surg Res 55: 32–37

    Article  PubMed  CAS  Google Scholar 

  40. Weinstein LP, Kovachev D, Chaglassian T (1986) Abdominal wall reconstruction. Scan J Plast Reconstr Surg 20: 109–113

    CAS  Google Scholar 

  41. Zeraga GS (1994) Contemporary adhesion prevention. Fertil Steril 61: 219–235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karabulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabulut, B., Sönmez, K., Türkyılmaz, Z. et al. Omentum prevents intestinal adhesions to mesh graft in abdominal infections and serosal defects. Surg Endosc 20, 978–982 (2006). https://doi.org/10.1007/s00464-005-0473-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-005-0473-2

Keywords

Navigation