Skip to main content
Log in

Generalized exponential functions applied to atomic calculations

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The use of a generalized exponential function r v−1 exp(−ζr μ) as a radial basis function in atomic calculations is studied with our special interest in the variationally optimum value of the parameter μ, since special cases of μ = 1 and μ = 2 correspond respectively to the radial parts of commonly-used Slater-type and Gaussian-type functions. Roothaan-Hartree-Fock calculations are performed for ground-state neutral atoms with atomic number Z = 2–54, singly-charged cations with Z = 3–55, and anions with Z = 1–53 within the single-zeta (or minimal basis) framework. For all the species examined, the optimtum μ values are found to be smaller than unity and increase towards unity as the atomic number increases. The present results support the use of Slater-type functions when μ is restricted to be an integer, but suggest from the variational point of view that even the exponential decay of Slater-type functions is too “strong” within the single-zeta approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zener, C.: Phys. Rev. 36, 51 (1930)

    Article  ADS  MATH  Google Scholar 

  2. Slater, J.C.: Phys. Rev. 36, 57 (1930)

    Article  ADS  MATH  Google Scholar 

  3. Boys, S.F.: Proc. Roy. Soc. A 200, 542 (1950)

    Article  ADS  MATH  Google Scholar 

  4. Koga, T., Kanayama, K., Thakkar, A.J.: Int. J. Quantum Chem. 62, 1 (1997)

    Article  Google Scholar 

  5. Koga, T., Kanayama, K.: Chem. Phys. Lett. 266, 123 (1997)

    Article  ADS  Google Scholar 

  6. Koga, T., Kanayama, K.: J. Phys. B 30, 1623 (1997)

    Article  ADS  Google Scholar 

  7. Parr, R.G. Joy, H.W.: J. Chem. Phys. 26, 424 (1957)

    Article  ADS  Google Scholar 

  8. Saturno, A.F., Parr, R.G.: J. Chem. Phys. 29, 490 (1958)

    Article  ADS  Google Scholar 

  9. Snyder, L.C.: J. Chem. Phys. 33, 1711 (1960)

    Article  ADS  Google Scholar 

  10. Allouche, A.: Theor. Chim. Acta 34,79 (1974)

    Article  Google Scholar 

  11. Koga, T., Thakkar, A.J.: Theor. Chim. Acta 85, 391 (1993)

    Article  Google Scholar 

  12. Pitzer, R.M.: QCPE Bull. 10, 14 (1990)

    Google Scholar 

  13. Powen, M.J.D.: Comp. J. 7, 155 (1964)

    Article  Google Scholar 

  14. Chong, D.P.: J. Chem. Phys. 47, 4907 (1967)

    Article  ADS  Google Scholar 

  15. Handy, N.C., Marron, M.T., Silverstone, H.J.: Phys. Rev. 180, 45 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  16. Handler, G.S., Smith, D.W., Silverstone, H.J.: J. Chem. Phys. 73, 3936 (1980)

    Article  ADS  Google Scholar 

  17. Ishida, T., Ohno, K.: Theor. Chim. Acta 81, 355 (1992)

    Article  Google Scholar 

  18. Bunge, C.F., Barrientos, J.A., Bunge, A.V., Cogordan, J.A.: Phys. Rev. A 469, 3691 (1992)

    Article  ADS  Google Scholar 

  19. Koga, T., Tatewaki, H., Thakkar, A.J.: J. Chem. Phys. 100, 8140 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschenauer, E.C., Markushin, V.E. Generalized exponential functions applied to atomic calculations. Z Phys D - Atoms, Molecules and Clusters 41, 111–115 (1997). https://doi.org/10.1007/s004600050297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004600050297

PACS

Navigation