Skip to main content
Log in

A model study of vibrational excitation of carbon dioxide molecule by slow electrons: the role of wave packet sliding from the ridge

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The method of an accurate calculation of vibrational excitation cross sections of a two-mode molecule by slow electrons within the framework of the local theory (the ‘boomerang’ model) is applied for a model study of the excitation of the symmetrical stretching vibrational modes of carbon dioxide in the two-mode approximation (i.e., only the symmetrical stretch and bending modes are included in the consideration). It is shown that the 'boomerang’ oscillations in the cross section are strongly suppressed due to the decay of the one-dimensional ‘boomerang' state caused by the anion wave packet sliding from the linear configuration ridge. Consequently, the bending motion in CO2 molecule should to be taken into account even if only the processes without the final bending excitation are considered. A simple quasi one-dimensional model describing the system sliding from the ridge is put forward which treats this phenomenon as a decay of the initial wave packet via the series of diabatic resonant states related to unstable trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massey, H.: Negative ions. Cambridge, London, New York, Melbourne: Cambridge University Press 1976

    Google Scholar 

  2. Lane, N.F.: Rev. Mod. Phys. 52, 29 (1980)

    Article  ADS  Google Scholar 

  3. Herzenberg, A.: J. Phys. B 1, 548 (1968) Herzenberg, A.: In: Electron-molecule collisions, p. 191. Shimamura, I., Takayanagi, K. (eds.). New York, London: Plenum Press 1984

    Article  ADS  Google Scholar 

  4. Dube, L., Herzenberg, A.: Phys. Rev. A 20, 194 (1979)

    Article  ADS  Google Scholar 

  5. Domcke, W.: Phys. Rep. 208, 97 (1991)

    Article  ADS  Google Scholar 

  6. Kazansky, A.K., Sergeeva, L. Yu.: J. Phys. B 17, 3217 (1994)

    Article  ADS  Google Scholar 

  7. Cadez, I., Gresteau, F., Tronc, M., Hall, R.: J. Phys. B 10, 3821 (1977)

    Article  ADS  Google Scholar 

  8. Szmytkowski, C., Zubek, M.: J. Phys. B 10, L31 (1977)

    Article  ADS  Google Scholar 

  9. Herzberg, G.: Molecular spectra and molecular structure. Toronto New York London: 1966

    Google Scholar 

  10. Estrada, H., Cederbaum, L.S., Domcke, W.: J. Chem. Phys. 84, 152 (1986)

    Article  ADS  Google Scholar 

  11. Murrell, J.N., Carter, S., Farantes, S.C., Huxley, P., Varandas, A.J.C.: Molecular potential energy functions. Chichester, NY, Brisbane, Toronto, Singapor: Wiley 1984

    Google Scholar 

  12. Orel, A.E., Kulander, K.C.: Phys. Rev. Lett. 71, 4315 (1993)

    Article  ADS  Google Scholar 

  13. Krauss, M., Neumann, D.: Chem. Phys. Lett. 14, 26 (1972)

    Article  ADS  Google Scholar 

  14. Hopper, D.G.: Chem. Phys. 53, 85 (1980)

    Article  ADS  Google Scholar 

  15. Blatt, J.M., Weisskopf, V.F.: Theoretical nuclear physics. NY, London, Sydney: Wiley 1966

    Google Scholar 

  16. Cederbaum, L.S., Domcke, W.: J. Phys. B 14, 4665 (1981)

    Article  ADS  Google Scholar 

  17. Kazansky, A.K., Ostrovsky, V.N.: Zh. Eksp. Teor. Fiz. 95, 1162 (1989); Sov. Phys. -JETP 68, 670 (1989)

    Google Scholar 

  18. Kazansky, A.K., Ostrovsky, V.N. In: Second International Workshop on Harmonic oscillators. D. Han, K.B. Wolf (eds.) NASA Conference Publication 3286, 349 (1995)

    Google Scholar 

  19. Du, M.L., Kazansky, A.K., Ostrovsky, V.N.: Phys. Rev. A 42, 4381 (1990); Kazansky, A.K., Ostrovsky, V.N., Telnov, D.A.: J. Phys. B 23, L433 (1990)

    Article  ADS  Google Scholar 

  20. Kazansky, A.K., Ostrovsky, V.N.: J. Phys. B 25, 2121 (1992); Kazansky, A.K., Ostrovsky, V.N., Sergeeva, L. Yu.: J. Phys. B 27, 5197 (1994)

    Article  ADS  Google Scholar 

  21. Feit, M.D., Fleck, J.A.: J. Chem. Phys. 78, 301 (1982)

    Article  ADS  Google Scholar 

  22. Feit, M.D., Fleck, J.A.: J. Chem. Phys. 80, 2578 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Feit, M.D., Fleck, J.A., Steiger, A.: J. Comput. Phys. 47, 412 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Kosloff, R.: J. Phys. Chem. 92, 2087 (1988)

    Article  Google Scholar 

  25. Schinke, R.: Photodissociation dynamics. Spectroscopy and fragmentation of small molecules. Cambridge University Press 1993

    Book  Google Scholar 

  26. McCurdy, C.W., Turner, J.L.: J. Chem. Phys. 78, 6773 (1983)

    Article  ADS  Google Scholar 

  27. Nussbaumer, H.J.: Fast fourier transform and convolution algorithms. Berlin: Springer 1982

    Book  Google Scholar 

  28. Currell, F., Comer, J.: J. Phys. B 26, 2463 (1993)

    Article  ADS  Google Scholar 

  29. Burrow, P.D., Sanche, L.: Phys. Rev. Lett. 28, 333 (1972)

    Article  ADS  Google Scholar 

  30. Tronc, M., Azria, R., Paineau, R.: J. Phys. 40, L–323 (1979)

    Google Scholar 

  31. Currell, F., Comer, J.: Phys. Rev. Lett. 74, 1319 (1995)

    Article  ADS  Google Scholar 

  32. Gallup, G.A.: Phys. Rev. A 34, 2746 (1986)

    Article  ADS  Google Scholar 

  33. Gertitschke, P.L., Domcke, W.: J. Phys. B 26, 2927 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazansky, A., Sergeeva, L.Y. A model study of vibrational excitation of carbon dioxide molecule by slow electrons: the role of wave packet sliding from the ridge. Z Phys D - Atoms, Molecules and Clusters 37, 305–313 (1996). https://doi.org/10.1007/s004600050045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004600050045

PACS

Navigation