Skip to main content

Advertisement

Log in

Effect of Modified Pharyngeal Electrical Stimulation on Patients with Severe Chronic Neurogenic Dysphagia: A Single-Arm Prospective Study

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Current treatments for severe chronic neurogenic dysphagia (SCND) are limited. Modified pharyngeal electrical stimulation (mPES) was modified from pharyngeal electrical stimulation (PES). This prospective study aimed to explore the efficacy and safety of mPES on SCND. 30 patients with severe chronic neurogenic dysphagia were recruited. mPES was administered to patients once daily until the functional oral intake scale score (FOIS) reach 3. Videofluoroscopic swallow study (VFSS), flexible endoscopic evaluation of swallowing (FEES), and high-resolution manometry (HRM) were utilized for evaluating the swallowing function. After mPES, 24 of 30 patients (80%) reached the endpoint (FOIS = 3) (P < 0.001). 3 of 6 tracheotomized patients (50%) removed the tracheal tube. The median number of mPES sessions for the 24 patients who met the criteria was 28 (17, 38) and the median period was 43 (29, 63) days. Moreover, a significant increase was observed in hypopharyngeal peak pressure (P = 0.015), hypopharyngeal contraction duration (P = 0.023), velopharyngeal peak pressure (P = 0.044), and velopharyngeal contraction duration (P = 0.031). A reduction was observed in PAS (P < 0.001), secretion (P = 0.001), vallecular residue (P < 0.001), left (P = 0.001), and right (P < 0.001) pyriform sinus residue. The median FOIS of 30 patients at 3-month follow-up was 5 (3, 6). No serious side effects were reported. mPES is a promising effective and safe therapeutic approach that is simple to use in patients with SCND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rofes L, Muriana D, Palomeras E, Vilardell N, Palomera E, Alvarez-Berdugo D, Casado V, Clave P. Prevalence, risk factors and complications of oropharyngeal dysphagia in stroke patients: a cohort study. Neurogastroenterol Motil. 2018. https://doi.org/10.1111/nmo.13338.

    Article  PubMed  Google Scholar 

  2. Rommel N, Hamdy S. Oropharyngeal dysphagia: manifestations and diagnosis. Nat Rev Gastroenterol Hepatol. 2016;13:49–59. https://doi.org/10.1038/nrgastro.2015.199.

    Article  PubMed  Google Scholar 

  3. Panebianco M, Marchese-Ragona R, Masiero S, Restivo DA. Dysphagia in neurological diseases: a literature review. Neurol Sci. 2020;41:3067–73. https://doi.org/10.1007/s10072-020-04495-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mann G, Hankey GJ, Cameron D. Swallowing function after stroke: prognosis and prognostic factors at 6 months. Stroke. 1999;30:744–8. https://doi.org/10.1161/01.str.30.4.744.

    Article  CAS  PubMed  Google Scholar 

  5. Bath PM, Lee HS, Everton LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD000323.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martino R, McCulloch T. Therapeutic intervention in oropharyngeal dysphagia. Nat Rev Gastroenterol Hepatol. 2016;13:665–79. https://doi.org/10.1038/nrgastro.2016.127.

    Article  PubMed  Google Scholar 

  7. Restivo DA, Hamdy S. Pharyngeal electrical stimulation device for the treatment of neurogenic dysphagia: technology update. Med Devices. 2018;11:21–6. https://doi.org/10.2147/MDER.S122287.

    Article  CAS  Google Scholar 

  8. Bath PM, Woodhouse LJ, Suntrup-Krueger S, Likar R, Koestenberger M, Warusevitane A, Herzog J, Schuttler M, Ragab S, Everton L, Ledl C, Walther E, Saltuari L, Pucks-Faes E, Bocksrucker C, Vosko M, de Broux J, Haase CG, Raginis-Zborowska A, Mistry S, Hamdy S, Dziewas R. Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: main results from the PHADER cohort study. EClinicalMedicine. 2020. https://doi.org/10.1016/j.eclinm.2020.100608.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dziewas R, Stellato R, van der Tweel I, Walther E, Werner CJ, Braun T, Citerio G, Jandl M, Friedrichs M, Nötzel K, Vosko MR, Mistry S, Hamdy S, McGowan S, Warnecke T, Zwittag P, Bath PM. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurol. 2018;17:849–59. https://doi.org/10.1016/s1474-4422(18)30255-2.

    Article  PubMed  Google Scholar 

  10. Everton LF, Benfield JK, Michou E, Hamdy S, Bath PM. Effects of pharyngeal electrical stimulation on swallow timings, clearance and safety in post-stroke dysphagia: analysis from the swallowing treatment using electrical pharyngeal stimulation (STEPS) trial. Stroke Res Treat. 2021;2021:5520657. https://doi.org/10.1155/2021/5520657.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vasant DH, Michou E, O’Leary N, Vail A, Mistry S, Hamdy S. Greater manchester stroke research n pharyngeal electrical stimulation in dysphagia poststroke: a prospective, randomized single-blinded interventional study. Neurorehabil Neural Repair. 2016. https://doi.org/10.1177/1545968316639129.

    Article  PubMed  Google Scholar 

  12. Bath PM, Scutt P, Love J, Clave P, Cohen D, Dziewas R, Iversen HK, Ledl C, Ragab S, Soda H, Warusevitane A, Woisard V, Hamdy S. Swallowing treatment using pharyngeal electrical stimulation trial I pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke. 2016;47:1562–70. https://doi.org/10.1161/STROKEAHA.115.012455.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jayasekeran V, Singh S, Tyrrell P, Michou E, Jefferson S, Mistry S, Gamble E, Rothwell J, Thompson D, Hamdy S. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology. 2010;138:1737–46. https://doi.org/10.1053/j.gastro.2010.01.052.

    Article  PubMed  Google Scholar 

  14. Suntrup S, Marian T, Schröder JB, Suttrup I, Muhle P, Oelenberg S, Hamacher C, Minnerup J, Warnecke T, Dziewas R. Electrical pharyngeal stimulation for dysphagia treatment in tracheotomized stroke patients: a randomized controlled trial. Intensive Care Med. 2015;41:1629–37. https://doi.org/10.1007/s00134-015-3897-8.

    Article  CAS  PubMed  Google Scholar 

  15. Restivo DA, Casabona A, Centonze D, Marchese-Ragona R, Maimone D, Pavone A. Pharyngeal electrical stimulation for dysphagia associated with multiple sclerosis: a pilot study. Brain Stimul. 2013;6:418–23. https://doi.org/10.1016/j.brs.2012.09.001.

    Article  PubMed  Google Scholar 

  16. Scutt P, Lee HS, Hamdy S, Bath PM. Pharyngeal electrical stimulation for treatment of poststroke dysphagia: individual patient data meta-analysis of randomised controlled trials. Stroke Res Treat. 2015;2015:429053. https://doi.org/10.1155/2015/429053.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Florea C, Braumann C, Mussger C, Leis S, Hauer L, Sellner J, Golaszewski SM. Therapy of dysphagia by prolonged pharyngeal electrical stimulation (phagenyx) in a patient with brainstem infarction. Brain Sci. 2020. https://doi.org/10.3390/brainsci10050256.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bergquist AJ, Clair JM, Lagerquist O, Mang CS, Okuma Y, Collins DF. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111:2409–26. https://doi.org/10.1007/s00421-011-2087-9.

    Article  CAS  PubMed  Google Scholar 

  19. Donnelly C, Stegmüller J, Blazevich AJ, Crettaz von Roten F, Kayser B, Neyroud D. Place N Modulation of torque evoked by wide-pulse, high-frequency neuromuscular electrical stimulation and the potential implications for rehabilitation and training. Sci Rep. 2021;11:6399. https://doi.org/10.1038/s41598-021-85645-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: what are we overlooking? Arch Phys Med Rehabil. 2018;99:806–12. https://doi.org/10.1016/j.apmr.2017.10.028.

    Article  PubMed  Google Scholar 

  21. Barss TS, Ainsley EN, Claveria-Gonzalez FC, Luu MJ, Miller DJ, Wiest MJ, Collins DF. Utilizing physiological principles of motor unit recruitment to reduce fatigability of electrically-evoked contractions: a narrative review. Arch Phys Med Rehabil. 2018;99:779–91. https://doi.org/10.1016/j.apmr.2017.08.478.

    Article  PubMed  Google Scholar 

  22. Pieber K, Herceg M, Paternostro-Sluga T, Schuhfried O. Optimizing stimulation parameters in functional electrical stimulation of denervated muscles: a cross-sectional study. J Neuroeng Rehabil. 2015;12:51. https://doi.org/10.1186/s12984-015-0046-0.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chandrasekaran S, Davis J, Bersch I, Goldberg G, Gorgey AS. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regen Res. 2020;15:1397–407. https://doi.org/10.4103/1673-5374.274326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crary MA, Mann GD, Groher ME. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch Phys Med Rehabil. 2005;86:1516–20. https://doi.org/10.1016/j.apmr.2004.11.049.

    Article  PubMed  Google Scholar 

  25. Wan G, Zhang Y, Shi J, Chen H, Wu H, Lin Y, Dou Z. The sensitivity and specificity of dysphagia evaluation with the Chinese version of the volume and viscosity swallowing test. Chi J Phys Med Rehabil. 2019;41:900–4.

    Google Scholar 

  26. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8. https://doi.org/10.1007/bf00417897.

    Article  CAS  PubMed  Google Scholar 

  27. Kuo CW, Allen CT, Huang CC, Lee CJ. Murray secretion scale and fiberoptic endoscopic evaluation of swallowing in predicting aspiration in dysphagic patients. Eur Arch Otorhinolaryngol. 2017;274:2513–9. https://doi.org/10.1007/s00405-017-4522-y.

    Article  PubMed  Google Scholar 

  28. Neubauer PD, Rademaker AW, Leder SB. The yale pharyngeal residue severity rating scale: an anatomically defined and image-based tool. Dysphagia. 2015;30:521–8. https://doi.org/10.1007/s00455-015-9631-4.

    Article  PubMed  Google Scholar 

  29. McCulloch TMHM, Ciucci MR. High resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol. 2010;119(6):369–76. https://doi.org/10.1177/000348941011900.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takasaki KUH, Enatsu K, Tanaka F, Sakihama N, Kum agami H, Takahashi H. Investigation of pharyngeal swallowing function using high-resolutionmanometry. Laryngoscope. 2008;118(10):1729–32. https://doi.org/10.1097/MLG.0b013.

    Article  PubMed  Google Scholar 

  31. Bayona HHG, Pizzorni N, Tack J, Goeleven A, Omari T, Rommel N. Accuracy of high-resolution pharyngeal manometry metrics for predicting aspiration and residue in oropharyngeal dysphagia patients with poor pharyngeal contractility. Dysphagia. 2022. https://doi.org/10.1007/s00455-022-10417-5.

    Article  PubMed  Google Scholar 

  32. Omari TI, Ciucci M, Gozdzikowska K, Hernández E, Hutcheson K, Jones C, Maclean J, Nativ-Zeltzer N, Plowman E, Rogus-Pulia N, Rommel N, O’Rourke A. High-resolution pharyngeal manometry and impedance: protocols and metrics-recommendations of a high-resolution pharyngeal manometry international working group. Dysphagia. 2020;35:281–95. https://doi.org/10.1007/s00455-019-10023-y.

    Article  PubMed  Google Scholar 

  33. Kellen PM, Becker DL, Reinhardt JM, Van Daele DJ. Computer-assisted assessment of hyoid bone motion from videofluoroscopic swallow studies. Dysphagia. 2010;25:298–306. https://doi.org/10.1007/s00455-009-9261-9.

    Article  PubMed  Google Scholar 

  34. Giraldo-Cadavid LF, Leal-Leano LR, Leon-Basantes GA, Bastidas AR, Garcia R, Ovalle S, Abondano-Garavito JE. Accuracy of endoscopic and videofluoroscopic evaluations of swallowing for oropharyngeal dysphagia. Laryngoscope. 2017;127:2002–10. https://doi.org/10.1002/lary.26419.

    Article  PubMed  Google Scholar 

  35. Fox M, Hebbard G, Janiak P, Brasseur JG, Ghosh S, Thumshirn M, Fried M, Schwizer W. High-resolution manometry predicts the success of oesophageal bolus transport and identifies clinically important abnormalities not detected by conventional manometry. Neurogastroenterol Motil. 2004;16:533–42. https://doi.org/10.1111/j.1365-2982.2004.00539.x.

    Article  CAS  PubMed  Google Scholar 

  36. Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H. Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope. 2008;118:1729–32. https://doi.org/10.1097/MLG.0b013e31817dfd02.

    Article  PubMed  Google Scholar 

  37. Daniels SK, Pathak S, Mukhi SV, Stach CB, Morgan RO, Anderson JA. The Relationship between lesion localization and dysphagia in acute stroke. Dysphagia. 2017;32:777–84. https://doi.org/10.1007/s00455-017-9824-0.

    Article  PubMed  Google Scholar 

  38. Xie M, Zeng P, Wan G, An D, Tang Z, Li C, Wei X, Shi J, Zhang Y, Dou Z, Wen H. The effect of combined guidance of botulinum toxin injection with ultrasound, catheter balloon, and electromyography on neurogenic cricopharyngeal dysfunction: a prospective study. Dysphagia. 2021. https://doi.org/10.1007/s00455-021-10310-7.

    Article  PubMed  Google Scholar 

  39. Cook IJ. Diagnosis and management of cricopharyngeal achalasia and other upper esophageal sphincter opening disorders. Curr Gastroenterol Rep. 2000;2:191–5. https://doi.org/10.1007/s11894-000-0060-6.

    Article  CAS  PubMed  Google Scholar 

  40. Takasaki HKU, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H. Investigation of pharyngeal swallowing function using high-resolutionmanometry. Laryngoscope. 2008;118:1729–32.

    Article  PubMed  Google Scholar 

  41. Setzen M, Cohen MA, Mattucci KF, Perlman PW, Ditkoff MK. Laryngopharyngeal sensory deficits as a predictor of aspiration. Otolaryngol Head Neck Surg. 2001;124:622–4. https://doi.org/10.1177/019459980112400605.

    Article  CAS  PubMed  Google Scholar 

  42. Mu L, Sanders I. Neuromuscular compartments and fiber-type regionalization in the human inferior pharyngeal constrictor muscle. Anat Rec. 2001;264:367–77. https://doi.org/10.1002/ar.10020.

    Article  CAS  PubMed  Google Scholar 

  43. Muhle P, Suntrup-Krueger S, Burkardt K, Lapa S, Ogawa M, Claus I, Labeit B, Ahring S, Oelenberg S, Warnecke T, Dziewas R. Standardized endoscopic swallowing evaluation for tracheostomy decannulation in critically ill neurologic patients - a prospective evaluation. Neurol Res Pract. 2021;3:26. https://doi.org/10.1186/s42466-021-00124-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marian T, Schröder JB, Muhle P, Claus I, Riecker A, Warnecke T, Suntrup-Krueger S, Dziewas R. Pharyngolaryngeal sensory deficits in patients with middle cerebral artery infarction: lateralization and relation to overall dysphagia severity. Cerebrovasc Dis Extra. 2017;7:130–9. https://doi.org/10.1159/000479483.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Onofri SM, Cola PC, Berti LC, da Silva RG, Dantas RO. Correlation between laryngeal sensitivity and penetration/aspiration after stroke. Dysphagia. 2014;29:256–61. https://doi.org/10.1007/s00455-013-9504-7.

    Article  PubMed  Google Scholar 

  46. Hamdy SRJ, Aziz Q, Singh KD, Thompson DG. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci. 1998;1(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  47. Suntrup S, Teismann I, Wollbrink A, Winkels M, Warnecke T, Pantev C, Dziewas R. Pharyngeal electrical stimulation can modulate swallowing in cortical processing and behavior - magnetoencephalographic evidence. Neuroimage. 2015;104:117–24. https://doi.org/10.1016/j.neuroimage.2014.10.016.

    Article  PubMed  Google Scholar 

  48. Suntrup-Krueger S, Bittner S, Recker S, Meuth SG, Warnecke T, Suttrup I, Marian T, Dziewas R. Electrical pharyngeal stimulation increases substance P level in saliva. Neurogastroenterol Motil. 2016;28:855–60. https://doi.org/10.1111/nmo.12783.

    Article  CAS  PubMed  Google Scholar 

  49. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27s–37s. https://doi.org/10.1016/s0002-9343(99)00337-x.

    Article  PubMed  Google Scholar 

  50. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511. https://doi.org/10.1152/physrev.00061.2017.

    Article  PubMed  Google Scholar 

  51. Kugelberg E, Edström L, Abbruzzese M. Mapping of motor units in experimentally reinnervated rat muscle Interpretation of histochemical and atrophic fibre patterns in neurogenic lesions. J Neurol Neurosurg Psychiatry. 1970;33:319–29. https://doi.org/10.1136/jnnp.33.3.319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–9. https://doi.org/10.1016/j.biocel.2013.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant Numbers 81672256 and 81871846) and the Clinical Research Special Fund Project of the Third Affiliated Hospital of Sun Yat-sen University (Voyage Plan) (YHJH201909).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZD and HW contributed to conceptualization. HW contributed to methodology. YS, MX, and YL contributed to formal analysis and investigation. XZ contributed to writing and preparation of original draft. XZ, YL, XW, CL, JH, JC, and FZ contributed to writing, reviewing, and editing of the manuscript. DZ contributed to funding acquisition. GW, YZ, YL, and ZH contributed to resources. HW contributed to supervision.

Corresponding authors

Correspondence to Zulin Dou or Hongmei Wen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

The research proposal was approved by the Ethics Committee of The Third Affiliated Hospital of Sun Yat-Sen University [Grant No. (2021)02–259-01].

Informed Consent

All patients signed written informed consent for the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 3199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, Y., Wang, X. et al. Effect of Modified Pharyngeal Electrical Stimulation on Patients with Severe Chronic Neurogenic Dysphagia: A Single-Arm Prospective Study. Dysphagia 38, 1128–1137 (2023). https://doi.org/10.1007/s00455-022-10536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10536-z

Keywords

Navigation