Skip to main content
Log in

Statistical Power and Swallowing Rehabilitation Research: Current Landscape and Next Steps

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Despite rapid growth in the number of treatments to rehabilitate dysphagia, studies often demonstrate mixed results with non-significant changes to functional outcomes. Given that power analyses are infrequently reported in dysphagia research, it remains unclear whether studies are adequately powered to detect a range of treatment effects. Therefore, this review sought to examine the current landscape of statistical power in swallowing rehabilitation research. Databases were searched for swallowing treatments using instrumental evaluations of swallowing and the penetration–aspiration scale as an outcome. Sensitivity power analyses based on each study’s statistical test and sample size were performed to determine the minimum effect size detectable with 80% power. Eighty-nine studies with 94 treatment comparisons were included. Sixty-seven percent of treatment comparisons were unable to detect effects smaller than d = 0.80. The smallest detectable effect size was d = 0.29 for electrical stimulation, d = 0.49 for postural maneuvers, d = 0.52 for non-invasive brain stimulation, d = 0.61 for combined treatments, d = 0.63 for respiratory-based interventions, d = 0.70 for lingual strengthening, and d = 0.79 for oral sensory stimulation. Dysphagia treatments examining changes in penetration–aspiration scale scores were generally powered to reliably detect larger effect sizes and not smaller (but potentially clinically meaningful) effects. These findings suggest that non-significant results may be related to low statistical power, highlighting the need for collaborative, well-powered intervention studies that can detect smaller, clinically meaningful changes in swallowing function. To facilitate implementation, a tutorial on simulation-based power analyses for ordinal outcomes is provided (https://osf.io/e6usd/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability and Supplemental Power Analysis Tutorial

The data analysis script and a supplemental tutorial on performing simulation-based power analyses with ordinal outcomes are available on the Open Science Framework at the following url: https://osf.io/65atf/.

References

  1. Mancopes R, Smaoui S, Steele CM. Effects of expiratory muscle strength training on videofluoroscopic measures of swallowing: a systematic review. Am J Speech Lang Pathol. 2020;30:1–22.

    Google Scholar 

  2. Langmore SE, Pisegna JM. Efficacy of exercises to rehabilitate dysphagia: a critique of the literature. Int J Speech Lang Pathol. 2015;17(3):222–9.

    Article  PubMed  Google Scholar 

  3. Bothe AK, Richardson JD. Statistical, practical, clinical, and personal significance: definitions and applications in speech-language pathology. Am J Speech Lang Pathol. 2011;20(3):233–42.

    Article  PubMed  Google Scholar 

  4. Hedström J, Tuomi L, Andersson M, Dotevall H, Osbeck H, Finizia C. Within-bolus variability of the penetration-aspiration scale across two subsequent swallows in patients with head and neck cancer. Dysphagia. 2017;32(5):683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Molfenter SM, Steele CM. Physiological variability in the deglutition literature: hyoid and laryngeal kinematics. Dysphagia. 2011;26(1):67–74.

    Article  PubMed  Google Scholar 

  6. Molfenter SM, Steele CM. Temporal variability in the deglutition literature. Dysphagia. 2012;27(2):162–77.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ahadi S, Diener E. Multiple determinants and effect size. J Pers Soc Psychol. 1989;56(3):398–406.

    Article  Google Scholar 

  8. Neyman J, Pearson ES. The testing of statistical hypotheses in relation to probabilities a priori. Math Proc Camb Philos Soc. 1933;29(4):492–510.

    Article  Google Scholar 

  9. Bacchetti P. Current sample size conventions: flaws, harms, and alternatives. BMC Med. 2010;8(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neyman J. Frequentist probability and frequentist statistics. Synthese. 1977;36(1):97–131.

    Article  Google Scholar 

  11. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988.

    Google Scholar 

  12. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76.

    Article  CAS  PubMed  Google Scholar 

  13. Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol. 2017;15(3):1–18.

    Article  Google Scholar 

  14. Yarkoni T. Big correlations in little studies: inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009). Perspect Psychol Sci. 2009;4(3):294–8.

    Article  PubMed  Google Scholar 

  15. Gelman A, Carlin J. Beyond power calculations: assessing type S (sign) and type M (magnitude) errors. Perspect Psychol Sci. 2014;9(6):641–51.

    Article  PubMed  Google Scholar 

  16. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2(8):696–701.

    Article  Google Scholar 

  17. Ioannidis JPA, Tarone R, McLaughlin JK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology. 2011;22(4):450–6.

    Article  PubMed  Google Scholar 

  18. Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008;19(5):640–8.

    Article  PubMed  Google Scholar 

  19. Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan A-W, Cronin E, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS ONE. 2008;3(8):1–31.

    Article  Google Scholar 

  20. Borders JC, Brates D. Use of the penetration-aspiration scale in dysphagia research: a systematic review. Dysphagia. 2019;35(4):583–97.

    Article  PubMed  Google Scholar 

  21. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8.

    Article  CAS  PubMed  Google Scholar 

  22. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org/.

  24. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    Article  PubMed  Google Scholar 

  25. Caldwell AR, Lakens D, Parlett-Pelleriti CM. Power analysis with superpower. 2019. https://aaroncaldwell.us/SuperpowerBook/. Accessed 20 Nov 2020.

  26. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013. https://doi.org/10.3389/fpsyg.2013.00863.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baijens LWJ, Speyer R, Passos VL, Pilz W, van der Kruis J, Haarmans S, et al. Surface electrical stimulation in dysphagic parkinson patients: a randomized clinical trial: electrical stimulation for dysphagia in Parkinson. Laryngoscope. 2013;123(11):E38-44.

    Article  PubMed  Google Scholar 

  28. Rogus-Pulia N, Rusche N, Hind JA, Zielinski J, Gangnon R, Safdar N, et al. Effects of device-facilitated isometric progressive resistance oropharyngeal therapy on swallowing and health-related outcomes in older adults with dysphagia. J Am Geriatr Soc. 2016;64(2):417–24.

    Article  PubMed  Google Scholar 

  29. Wall LR, Ward EC, Cartmill B, Hill AJ, Isenring E, Byrnes J, et al. Prophylactic swallowing therapy for patients with head and neck cancer: a three-arm randomized parallel-group trial. Head Neck. 2020;42(5):873–85.

    Article  PubMed  Google Scholar 

  30. Messing BP. Prophylactic swallow therapy for patients with head and neck cancer undergoing chemoradiotherapy: a randomized trial. Dysphagia. 2017;32(4):487–500.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Daele DJ, Langmore SE, Krisciunas GP, Lazarus CL, Pauloski BR, McCulloch TM, et al. The impact of time after radiation treatment on dysphagia in patients with head and neck cancer enrolled in a swallowing therapy program. Head Neck. 2019;41(3):606–14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guillén-Solà A, Messagi Sartor M, Bofill Soler N, Duarte E, Barrera MC, Marco E. Respiratory muscle strength training and neuromuscular electrical stimulation in subacute dysphagic stroke patients: a randomized controlled trial. Clin Rehabil. 2017;31(6):761–71.

    Article  PubMed  Google Scholar 

  33. Lim KB, Lee HJ, Yoo J, Kwon YG. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med. 2014;38(5):592–602.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Terré R, Mearin F. A randomized controlled study of neuromuscular electrical stimulation in oropharyngeal dysphagia secondary to acquired brain injury. Eur J Neurol. 2015;22(4):687-e44.

    Article  PubMed  Google Scholar 

  35. Simonelli M, Ruoppolo G, Iosa M, Morone G, Fusco A, Grasso MG, et al. A stimulus for eating. The use of neuromuscular transcutaneous electrical stimulation in patients affected by severe dysphagia after subacute stroke: a pilot randomized controlled trial. NeuroRehabilitation. 2019;44:103–310.

    Article  PubMed  Google Scholar 

  36. Lee HY, Hong JS, Lee KC, Shin YK, Cho SR. Changes in hyolaryngeal movement and swallowing function after neuromuscular electrical stimulation in patients with dysphagia. Ann Rehabil Med. 2015;39(2):199–209.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun S-F, Hsu C-W, Lin H-S, Sun H-P, Chang P-H, Hsieh W-L, et al. Combined neuromuscular electrical stimulation (NMES) with fiberoptic endoscopic evaluation of swallowing (FEES) and traditional swallowing rehabilitation in the treatment of stroke-related dysphagia. Dysphagia. 2013;28(4):557–66.

    Article  CAS  PubMed  Google Scholar 

  38. Ko KR, Park HJ, Hyun JK, Seo IH, Kim TU. Effect of laryngopharyngeal neuromuscular electrical stimulation on dysphonia accompanied by dysphagia in post-stroke and traumatic brain injury patients: a pilot study. Ann Rehabil Med. 2016;40(4):600–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park J-S, Hwang N-K, Kim H-H, Lee G, Jung Y-J. Effect of neuromuscular electrical stimulation combined with effortful swallowing using electromyographic biofeedback on oropharyngeal swallowing function in stroke patients with dysphagia: a pilot study. Medicine. 2019;98(44):1–6.

    Article  Google Scholar 

  40. Rofes L, Arreola V, López I, Martin A, Sebastián M, Ciurana A, et al. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction. Neurogastroenterol Motil. 2013;25(11):888–96.

    Article  CAS  PubMed  Google Scholar 

  41. Lin PH, Hsiao TY, Chang YC, Ting LL, Chen WS, Chen SC, et al. Effects of functional electrical stimulation on dysphagia caused by radiation therapy in patients with nasopharyngeal carcinoma. Support Care Cancer. 2011;19(1):91–9.

    Article  PubMed  Google Scholar 

  42. Jeon YH, Cho KH, Park SJ. Effects of neuromuscular electrical stimulation (NMES) plus upper cervical spine mobilization on forward head posture and swallowing function in stroke patients with dysphagia. Brain Sci. 2020;10(8):1–10.

    Article  Google Scholar 

  43. Park JS, Oh DH, Hwang NK, Lee JH. Effects of neuromuscular electrical stimulation combined with effortful swallowing on post-stroke oropharyngeal dysphagia: a randomised controlled trial. J Oral Rehabil. 2016;43(6):426–34.

    Article  PubMed  Google Scholar 

  44. Lee KW, Kim SB, Lee JH, Lee SJ, Park JG, Jang KW. Effects of neuromuscular electrical stimulation for masseter muscle on oral dysfunction after stroke. Ann Rehabil Med. 2019;43(1):11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park JS, Oh DH, Hwang NK, Lee JH. Effects of neuromuscular electrical stimulation in patients with Parkinson’s disease and dysphagia: a randomized, single-blind, placebo-controlled trial. NeuroRehabilitation. 2018;42(4):457–63.

    Article  PubMed  Google Scholar 

  46. Mituuti CT, Arone MMAS, Rosa RR, Berretin-Felix G. Effects of sensory neuromuscular electrical stimulation on swallowing in the elderly affected by stroke. Top Geriatr Rehabil. 2018;34(1):71–81.

    Article  Google Scholar 

  47. Langmore SE, McCulloch TM, Krisciunas GP, Lazarus CL, Van Daele DJ, Pauloski BR, et al. Efficacy of electrical stimulation and exercise for dysphagia in patients with head and neck cancer: a randomized clinical trial. Head Neck. 2015;38:1221–31.

    Article  Google Scholar 

  48. Park JW, Kim Y, Oh JC, Lee HJ. Effortful swallowing training combined with electrical stimulation in post-stroke dysphagia: a randomized controlled study. Dysphagia. 2012;27(4):521–7.

    Article  PubMed  Google Scholar 

  49. Huang KL, Liu TY, Huang YC, Leong CP, Lin WC, Pong YP. Functional outcome in acute stroke patients with oropharyngeal dysphagia after swallowing therapy. J Stroke Cerebrovasc Dis. 2014;23(10):2547–53.

    Article  PubMed  Google Scholar 

  50. Bhatt AD, Goodwin N, Cash E, Bhatt G, Silverman CL, Spanos WJ, et al. Impact of transcutaneous neuromuscular electrical stimulation on dysphagia in patients with head and neck cancer treated with definitive chemoradiation. Head Neck. 2015;37(7):1051–6.

    Article  PubMed  Google Scholar 

  51. Lim KB, Lee HJ, Lim SS, Choi YI. Neuromuscular electrical and thermal-tactile stimulation for dysphagia caused by stroke: a randomized controlled trial. J Rehabil Med. 2009;41(3):174–8.

    Article  PubMed  Google Scholar 

  52. Martindale N, Stephenson J, Pownall S. Neuromuscular electrical stimulation plus rehabilitative exercise as a treatment for dysphagia in stroke and non-stroke patients in an NHS setting: feasibility and outcomes. Geriatrics. 2019;4(4):53.

    Article  PubMed Central  Google Scholar 

  53. Gallas S, Marie JP, Leroi AM, Verin E. Sensory transcutaneous electrical stimulation improves post-stroke dysphagic patients. Dysphagia. 2010;25(4):291–7.

    Article  PubMed  Google Scholar 

  54. Oh D-H, Park J-S, Kim H-J, Chang M-Y, Hwang N-K. The effect of neuromuscular electrical stimulation with different electrode positions on swallowing in stroke patients with oropharyngeal dysphagia: a randomized trial. J Back Musculoskelet Rehabil. 2019;33(4):637–44.

    Article  Google Scholar 

  55. Bogaardt H, van Dam D, Wever NM, Bruggeman CE, Koops J, Fokkens WJ. Use of neuromuscular electrostimulation in the treatment of dysphagia in patients with multiple sclerosis. Ann Otol Rhinol Laryngol. 2009;118(4):241–6.

    Article  PubMed  Google Scholar 

  56. Arreola V, Ortega O, Álvarez-Berdugo D, Rofes L, Tomsen N, Cabib C, et al. Effect of transcutaneous electrical stimulation in chronic poststroke patients with oropharyngeal dysphagia: 1-year results of a randomized controlled trial. Neurorehabil Neural Repair. 2021;17:154596832110231.

    Google Scholar 

  57. Bath PM, Scutt P, Love J, Clavé P, Cohen D, Dziewas R, et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke. 2016;47(6):1562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Everton LF, Benfield JK, Michou E, Hamdy S, Bath PM. Effects of pharyngeal electrical stimulation on swallow timings, clearance and safety in post-stroke dysphagia: analysis from the swallowing treatment using electrical pharyngeal stimulation (STEPS) trial. Stroke Res Treat. 2021;2021:1–8.

    Article  Google Scholar 

  59. Hägglund P, Hägg M, Levring Jäghagen E, Larsson B, Wester P. Oral neuromuscular training in patients with dysphagia after stroke: a prospective, randomized, open-label study with blinded evaluators. BMC Neurol. 2020;20(1):405.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jayasekeran V, Singh S, Tyrrell P, Michou E, Jefferson S, Mistry S, et al. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology. 2010;138(5):1737–46.

    Article  PubMed  Google Scholar 

  61. Lee SY, Park D, Jang J, Jang EG, Lee JC, Park Y, et al. Compensatory effects of sequential 4-channel neuromuscular electrical stimulation for the treatment of acute, subacute, and chronic dysphagia in a prospective, double-blinded randomized clinical trial. Neurorehabil Neural Repair. 2021. https://doi.org/10.1177/15459683211029891.

    Article  PubMed  Google Scholar 

  62. Ludlow CL, Humbert I, Saxon K, Poletto C, Sonies B, Crujido L. Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal dysphagia. Dysphagia. 2007;22(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Restivo DA, Casabona A, Centonze D, Marchese-Ragona R, Maimone D, Pavone A. Pharyngeal electrical stimulation for dysphagia associated with multiple sclerosis: a pilot study. Brain Stimul. 2013;6(3):418–23.

    Article  PubMed  Google Scholar 

  64. Seo K-H, Jang J, Jang EG, Park Y, Lee SY, Kim BR, et al. Clinical effectiveness of the sequential 4-channel NMES compared with that of the conventional 2-channel NMES for the treatment of dysphagia in a prospective double-blind randomized controlled study. J NeuroEng Rehabil. 2021;18(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Miller S, Diers D, Jungheim M, Schnittger C, Stürenburg HJ, Ptok M. Studying effects of neuromuscular electrostimulation therapy in patients with dysphagia: which pitfalls may occur? A translational phase I study. Ger Med Sci. 2021;19:Doc07.

    PubMed  PubMed Central  Google Scholar 

  66. Ortega O, Rofes L, Martin A, Arreola V, López I, Clavé P. A comparative study between two sensory stimulation strategies after two weeks treatment on older patients with oropharyngeal dysphagia. Dysphagia. 2016;31(5):706–16.

    Article  PubMed  Google Scholar 

  67. Bath PM, Woodhouse LJ, Suntrup-Krueger S, Likar R, Koestenberger M, Warusevitane A, et al. Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: main results from the PHADER cohort study. EClinicalMedicine. 2020;28:100608.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Michou E, Mistry S, Jefferson S, Tyrrell P, Hamdy S. Characterizing the mechanisms of central and peripheral forms of neurostimulation in chronic dysphagic stroke patients. Brain Stimul. 2014;7(1):66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vasant DH, Michou E, O’Leary N, Vail A, Mistry S, Hamdy S. Pharyngeal electrical stimulation in dysphagia poststroke. Neurorehabil Neural Repair. 2016;30(9):866–75.

    Article  PubMed  Google Scholar 

  70. Verin E, Maltete D, Ouahchi Y, Marie J-P, Hannequin D, Massardier EG, et al. Submental sensitive transcutaneous electrical stimulation (SSTES) at home in neurogenic oropharyngeal dysphagia: a pilot study. Ann Phys Rehabil Med. 2011;54(6):366–75.

    Article  CAS  PubMed  Google Scholar 

  71. Park J, Kim H, Park T, Yeo J, Hong H, Oh J. A pilot study of the effects of high-frequency repetitive transcranial magnetic stimulation on dysphagia in the elderly. Neurogastroenterol Motil. 2019;31(5):1–6.

    Article  Google Scholar 

  72. Restivo DA, Alfonsi E, Casabona A, Hamdy S, Tassorelli C, Panebianco M, et al. A pilot study on the efficacy of transcranial direct current stimulation applied to the pharyngeal motor cortex for dysphagia associated with brainstem involvement in multiple sclerosis. Clin Neurophysiol. 2019;130(6):1017–24.

    Article  PubMed  Google Scholar 

  73. Lee JH, Kim SB, Lee KW, Lee SJ, Lee JU. Effect of repetitive transcranial magnetic stimulation according to the stimulation site in stroke patients with dysphagia. Ann Rehabil Med. 2015;39(3):432–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim L, Chun MH, Kim BR, Lee SJ. Effect of repetitive transcranial magnetic stimulation on patients with brain injury and dysphagia. Ann Rehabil Med. 2011;35(6):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Park E, Kim MS, Chang WH, Oh SM, Kim YK, Lee A, et al. Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimul. 2017;10(1):75–82.

    Article  PubMed  Google Scholar 

  76. Ünlüer NÖ, Temuçin ÇM, Demir N, Serel Arslan S, Karaduman AA. Effects of low-frequency repetitive transcranial magnetic stimulation on swallowing function and quality of life of post-stroke patients. Dysphagia. 2019;34(3):360–71.

    Article  PubMed  Google Scholar 

  77. Verin E, Leroi AM. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study. Dysphagia. 2009;24(2):204–10.

    Article  CAS  PubMed  Google Scholar 

  78. Michou E, Mistry S, Jefferson S, Singh S, Rothwell J, Hamdy S. Targeting unlesioned pharyngeal motor cortex improves swallowing in healthy individuals and after dysphagic stroke. Gastroenterology. 2012;142(1):29–38.

    Article  PubMed  Google Scholar 

  79. Park JW, Oh JC, Lee JW, Yeo JS, Ryu KH. The effect of 5Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013;25(4):324–31.

    Article  PubMed  Google Scholar 

  80. Khedr EM, Mohamed KO, Soliman RK, Hassan AMM, Rothwell JC. The effect of high-frequency repetitive transcranial magnetic stimulation on advancing parkinson’s disease with dysphagia: double blind randomized clinical trial. Neurorehabil Neural Repair. 2019;33(6):442–52.

    Article  PubMed  Google Scholar 

  81. Lin WS, Chou CL, Chang MH, Chung YM, Lin FG, Tsai PY. Vagus nerve magnetic modulation facilitates dysphagia recovery in patients with stroke involving the brainstem—a proof of concept study. Brain Stimul. 2018;11(2):264–70.

    Article  PubMed  Google Scholar 

  82. Zhong L, Rao J, Wang J, Li F, Peng Y, Liu H, et al. Repetitive transcranial magnetic stimulation at different sites for dysphagia after stroke: a randomized, observer-blind clinical trial. Front Neurol. 2021;12:625683.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Troche MS, Okun MS, Rosenbek JC, Musson N, Fernandez HH, Rodriguez R, et al. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial. Neurology. 2010;75(21):1912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park JS, Oh DH, Chang MY, Kim KM. Effects of expiratory muscle strength training on oropharyngeal dysphagia in subacute stroke patients: a randomised controlled trial. J Oral Rehabil. 2016;43(5):364–72.

    Article  CAS  PubMed  Google Scholar 

  85. Moon JH, Jung J-H, Won YS, Cho H-Y, Cho K. Effects of expiratory muscle strength training on swallowing function in acute stroke patients with dysphagia. J Phys Ther Sci. 2017;29:609–12.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Eom MJ, Chang MY, Oh DH, Kim HD, Han NM, Park JS. Effects of resistance expiratory muscle strength training in elderly patients with dysphagic stroke. NeuroRehabilitation. 2017;41(4):747–52.

    Article  PubMed  Google Scholar 

  87. Hutcheson KA, Barrow MP, Plowman EK, Lai SY, Fuller CD, Barringer DA, et al. Expiratory muscle strength training for radiation-associated aspiration after head and neck cancer: a case series. Laryngoscope. 2017;128(5):1044–51.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pitts T, Bolser D, Rosenbek J, Troche MS, Okun MS, Sapienza C. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest. 2009;135(5):1301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Plowman EK, Tabor-Gray L, Rosado KM, Vasilopoulos T, Robison R, Chapin JL, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized, sham-controlled trial. Muscle Nerve. 2019;59(1):40–6.

    Article  PubMed  Google Scholar 

  90. Plowman EK, Watts SA, Tabor L, Robison R, Gaziano J, Domer AS, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: expiratory training in ALS. Muscle Nerve. 2016;54(1):48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hegland KW. Rehabilitation of swallowing and cough functions following stroke: an expiratory muscle strength training trial. Arch Phys Med Rehabil. 2016;97(8):1345–51.

    Article  PubMed  Google Scholar 

  92. Mohannak N, Pattison G, Radich B, Hird K, Godecke E, Mastaglia F, et al. Exploring the efficacy of the expiratory muscle strength trainer to improve swallowing in inclusion body myositis: a pilot study. Neuromuscul Disord. 2020;30(4):294–300.

    Article  PubMed  Google Scholar 

  93. Arnold RJ, Bausek N. Effect of respiratory muscle training on dysphagia in stroke patients—a retrospective pilot study. Laryngosc Investig Otolaryngol. 2020;5(6):1050–5.

    Article  Google Scholar 

  94. Jang K, Lee S, Kim S, Lee K, Lee J, Park J. Effects of mechanical inspiration and expiration exercise on velopharyngeal incompetence in subacute stroke patients. J Rehabil Med. 2019;51(2):97–102.

    Article  PubMed  Google Scholar 

  95. Martin-Harris B, McFarland D, Hill EG, Strange CB, Focht KL, Wan Z, et al. Respiratory-swallow training in patients with head and neck cancer. Arch Phys Med Rehabil. 2015;96(5):885–93.

    Article  PubMed  Google Scholar 

  96. Choi J-B, Shim S-H, Yang J-E, Kim H-D, Lee D-H, Park J-S. Effects of Shaker exercise in stroke survivors with oropharyngeal dysphagia. NeuroRehabilitation. 2017;41(4):753–7.

    Article  PubMed  Google Scholar 

  97. Gao J, Zhang H-J. Effects of chin tuck against resistance exercise versus Shaker exercise on dysphagia and psychological state after cerebral infarction. Eur J Phys Rehabil Med. 2017;53(3):426–32.

    Article  PubMed  Google Scholar 

  98. Kim H, Park J. Efficacy of modified chin tuck against resistance exercise using hand-free device for dysphagia in stroke survivors: a randomised controlled trial. J Oral Rehabil. 2019;46(11):1042–6.

    Article  CAS  PubMed  Google Scholar 

  99. Mano T, Katsuno M, Banno H, Suzuki K, Suga N, Hashizume A, et al. Head lift exercise improves swallowing dysfunction in spinal and bulbar muscular atrophy. Eur Neurol. 2015;74(5–6):251–8.

    Article  PubMed  Google Scholar 

  100. Park JS, Hwang NK, Oh DH, Chang MY. Effect of head lift exercise on kinematic motion of the hyolaryngeal complex and aspiration in patients with dysphagic stroke. J Oral Rehabil. 2017;44(5):385–91.

    Article  CAS  PubMed  Google Scholar 

  101. Park JS, An DH, Oh DH, Chang MY. Effect of chin tuck against resistance exercise on patients with dysphagia following stroke: a randomized pilot study. NeuroRehabilitation. 2018;42(2):191–7.

    Article  PubMed  Google Scholar 

  102. Park J, Lee G, Jung Y. Effects of game-based chin tuck against resistance exercise vs head-lift exercise in patients with dysphagia after stroke: an assessor-blind, randomized controlled trial. J Rehabil Med. 2019;51(10):749–54.

    Article  PubMed  Google Scholar 

  103. Park J-S, An D-H, Kam K-Y, Yoon T, Kim T, Chang M-Y. Effects of resistive jaw opening exercise in stroke patients with dysphagia: a double-blind, randomized controlled study. BMR. 2020;33(3):507–13.

    Article  Google Scholar 

  104. Ploumis A, Papadopoulou SL, Theodorou SJ, Exarchakos G, Givissis P, Beris A. Cervical isometric exercises improve dysphagia and cervical spine malalignment following stroke with hemiparesis: a randomized controlled trial. Eur J Phys Rehabil Med. 2019;54(6):845–52.

    Article  Google Scholar 

  105. Jakobsen D, Poulsen I, Schultheiss C, Riberholt CG, Curtis DJ, Petersen TH, et al. The effect of intensified nonverbal facilitation of swallowing on dysphagia after severe acquired brain injury: a randomised controlled pilot study. NRE. 2019;45(4):525–36.

    Article  CAS  Google Scholar 

  106. Power ML, Fraser CH, Hobson A, Singh S, Tyrrell P, Nicholson DA, et al. Evaluating oral stimulation as a treatment for dysphagia after stroke. Dysphagia. 2006;21(1):49–55.

    Article  PubMed  Google Scholar 

  107. Rosenbek JC, Robbins J, Willford WO, Kirk G, Schiltz A, Sowell TW, et al. Comparing treatment intensities of tactile-thermal application. Dysphagia. 1998;13(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  108. Tomsen N, Ortega O, Rofes L, Arreola V, Martin A, Mundet L, et al. Acute and subacute effects of oropharyngeal sensory stimulation with TRPV1 agonists in older patients with oropharyngeal dysphagia: a biomechanical and neurophysiological randomized pilot study. Ther Adv Gastroenterol. 2019. https://doi.org/10.1177/1756284819842043.

    Article  Google Scholar 

  109. Steele CM, Bayley MT, Peladeau-Pigeon M, Nagy A, Namasivayam AM, Stokely SL, et al. A randomized trial comparing two tongue-pressure resistance training protocols for post-stroke dysphagia. Dysphagia. 2016;31:452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Robbins J, Kays SA, Gangnon RE, Hind JA, Hewitt AL, Gentry LR, et al. The effects of lingual exercise in stroke patients with dysphagia. Arch Phys Med Rehabil. 2007;88(2):150–8.

    Article  PubMed  Google Scholar 

  111. Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53(9):1483–9.

    Article  PubMed  Google Scholar 

  112. Namiki C, Hara K, Tohara H, Kobayashi K, Chantaramanee A, Nakagawa K, et al. Tongue-pressure resistance training improves tongue and suprahyoid muscle functions simultaneously. CIA. 2019;14:601–8.

    Article  Google Scholar 

  113. Kim HD, Choi JB, Yoo SJ, Chang MY, Lee SW, Park JS. Tongue-to-palate resistance training improves tongue strength and oropharyngeal swallowing function in subacute stroke survivors with dysphagia. J Oral Rehabil. 2017;44(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  114. Balou M, Herzberg EG, Kamelhar D, Molfenter SM. An intensive swallowing exercise protocol for improving swallowing physiology in older adults with radiographically confirmed dysphagia. CIA. 2019;14:283–8.

    Article  Google Scholar 

  115. Hsiang C-C, Chen AW-G, Chen C-H, Chen M-K. Early postoperative oral exercise improves swallowing function among patients with oral cavity cancer: a randomized controlled trial. Ear Nose Throat J. 2019;98(6):E73–80.

    Article  PubMed  Google Scholar 

  116. Kraaijenga SAC, van der Molen L, Stuiver MM, Takes RP, Al-Mamgani A, van den Brekel MWM, et al. Efficacy of a novel swallowing exercise program for chronic dysphagia in long-term head and neck cancer survivors. Head Neck. 2017;39(10):1943–61.

    Article  PubMed  Google Scholar 

  117. Tarameshlu M. The effect of traditional dysphagia therapy on the swallowing function in patients with multiple sclerosis: a pilot double-blinded randomized controlled trial. J Bodyw Mov Ther. 2019;23(1):171–6.

    Article  PubMed  Google Scholar 

  118. van der Molen L, van Rossum MA, Burkhead LM, Smeele LE, Rasch CR, Hilgers FJ. A randomized preventive rehabilitation trial in advanced head and neck cancer patients treated with chemoradiotherapy: feasibility, compliance, and short-term effects. Dysphagia. 2011;26(2):155–70.

    Article  PubMed  Google Scholar 

  119. van der Molen L, van Rossum MA, Rasch CRN, Smeele LE, Hilgers FJM. Two-year results of a prospective preventive swallowing rehabilitation trial in patients treated with chemoradiation for advanced head and neck cancer. Eur Arch Otorhinolaryngol. 2014;271(5):1257–70.

    Article  PubMed  Google Scholar 

  120. Furuie H, Hamamoto T, Chikuie N, Kono T, Taruya T, Ishino T, et al. Evaluation of role of prophylactic swallowing rehabilitation in chemoradiotherapy for advanced head and neck cancer using novel software analysis of videofluorography images. Hiroshima J Med Sci. 2019;68(2–3):27–34.

    Google Scholar 

  121. Boukrina O, Kucukboyaci NE, Dobryakova E. Considerations of power and sample size in rehabilitation research. Int J Psychophysiol. 2020;154:6–14.

    Article  PubMed  Google Scholar 

  122. Knottnerus JA, Bouter LM. The ethics of sample size: two-sided testing and one-sided thinking. J Clin Epidemiol. 2001;54:109–10.

    Article  CAS  PubMed  Google Scholar 

  123. Lakens D. Performing high-powered studies efficiently with sequential analyses: sequential analyses. Eur J Soc Psychol. 2014;44(7):701–10.

    Article  Google Scholar 

  124. Lakens D. Will knowledge about more efficient study designs increase the willingness to pre-register? https://osf.io/svzyc. Accessed Mar 2017.

  125. Brysbaert M, Stevens M. Power analysis and effect size in mixed effects models: a tutorial. J Cogn. 2018;1(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020. https://doi.org/10.1056/nejmoa2034577.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang JJ, Blumenthal GM, He K, Tang S, Cortazar P, Sridhara R. Overestimation of the effect size in group sequential trials. Clin Cancer Res. 2012;18(18):4872–6.

    Article  CAS  PubMed  Google Scholar 

  128. Project J. The jamovi project. 2020. (jamovi). https://www.jamovi.org.

  129. Johnson PCD, Barry SJE, Ferguson HM, Mu P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol Evol. 2014;6:133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Quintana DS. A synthetic dataset primer for the biobehavioural sciences to promote reproducibility and hypothesis generation. Elife. 2020;9:1–12.

    Article  Google Scholar 

  131. Quintana DS. Most oxytocin administration studies are statistically underpowered to reliably detect (or reject) a wide range of effect sizes. Compr Psychoneuroendocrinol. 2020;4:1–4.

    Article  Google Scholar 

Download references

Funding

N/A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Borders.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borders, J.C., Grande, A.A. & Troche, M.S. Statistical Power and Swallowing Rehabilitation Research: Current Landscape and Next Steps. Dysphagia 37, 1673–1688 (2022). https://doi.org/10.1007/s00455-022-10428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10428-2

Keywords

Navigation