Cytokine and Growth Factor Response in a Rat Model of Radiation Induced Injury to the Submental Muscles


Submental muscles (i.e., mylohyoid and geniohyoid) play a vital role during swallowing, protecting the airway from ingested material. To design therapies to reduce the functional deficits associated with radiation treatment relies in part on our understanding of the changes in the cytokine and growth factor response that can impact muscle function. The purpose of this study is to quantify changes in the inflammatory, pro-fibrotic, and pro-angiogenic factors following 48 Gy of fractionated radiation to the mylohyoid muscle. We hypothesized that (1) irradiation will provoke increases in TGF-1β and MMP-2 mRNA in the mylohyoid muscle; and (2) muscles surrounding the target location (i.e., geniohyoid and digastric muscles) will exhibit similar alterations in their gene expression profiles. Rats were exposed to 6 fractions of 8 Gy using a 6 MeV electron beam on a clinical linear accelerator. The highest dose curve was focused at the mylohyoid muscle. After 2- and 4-weeks post-radiation, the mylohyoid, geniohyoid, and digastric muscles were harvested. Expression of TNF-α, IFNγ, IL-1β, IL-6, TGF-1β, VEGF, MMP-2, and MMP-9 mRNA was analyzed via PCR and/or RT-PCR. TGF-1β, MMP-2, and IL-6 expression was upregulated in the irradiated mylohyoid compared to non-irradiated controls. No notable changes in TNF-α, IFNγ, and IL-1β mRNA expression were observed in irradiated muscles. Differing expression profiles were found in the surrounding muscles post-radiation. Results demonstrated that irradiation provokes molecular signals involved in the regulation of wound healing, which could lead to fibrosis or atrophy in the swallowing muscle after radiation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Lazarus CL, Logemann JA, Pauloski BR, et al. Swallowing disorders in head and neck cancer patients treated with radiotherapy and adjuvant chemotherapy. Laryngoscope. 1996;106(9 Pt 1):1157–66.

    CAS  PubMed  Google Scholar 

  2. 2.

    Logemann JA, Pauloski BR, Rademaker AW, et al. Swallowing disorders in the first year after radiation and chemoradiation. Head Neck. 2008;30(2):148–58.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 2007;17(2):81–8.

    PubMed  Google Scholar 

  4. 4.

    Kumar R, Madanikia S, Starmer H, et al. Radiation dose to the floor of mouth muscles predicts swallowing complications following chemoradiation in oropharyngeal squamous cell carcinoma. Oral Oncol. 2014;50(1):65–70.

    PubMed  Google Scholar 

  5. 5.

    Starmer HM, Quon H, Kumar R, et al. The effect of radiation dose on swallowing: evaluation of aspiration and kinematics. Dysphagia. 2015;30(4):430–7.

    PubMed  Google Scholar 

  6. 6.

    Pearson WG Jr, Langmore SE, Zumwalt AC. Evaluating the structural properties of suprahyoid muscles and their potential for moving the hyoid. Dysphagia. 2011;26(4):345–51.

    PubMed  Google Scholar 

  7. 7.

    Hirano M, Kuroiwa Y, Tanaka S, Matsuoka H, Sato K, Yoshida T. Dysphagia following various degrees of surgical resection for oral cancer. Ann Otol Rhinol Laryngol. 1992;101(2 Pt 1):138–41.

    CAS  PubMed  Google Scholar 

  8. 8.

    King SN, Fletcher B, Kimbell B, Bonomo N, Pitts T. Adaptations to oral and pharyngeal swallowing function induced by injury to mylohyoid muscle. BioRxiv. 2019.

    Article  Google Scholar 

  9. 9.

    Russell JA, Connor NP. Effects of age and radiation treatment on function of extrinsic tongue muscles. Radiat Oncol. 2014;9:254.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Benedict PA, Ruiz R, Verma A, et al. The effects of concurrent chemoradiation therapy to the base of tongue in a preclinical model. Laryngoscope. 2018;128(8):1783–90.

    CAS  PubMed  Google Scholar 

  11. 11.

    Linard C, Ropenga A, Vozenin-Brotons MC, Chapel A, Mathe D. Abdominal irradiation increases inflammatory cytokine expression and activates NF-kappaB in rat ileal muscularis layer. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G556–565.

    CAS  PubMed  Google Scholar 

  12. 12.

    Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013;61(1):54–62.

    CAS  PubMed  Google Scholar 

  13. 13.

    Peng G, Masood K, Gantz O, Sinha U. Neuromuscular electrical stimulation improves radiation-induced fibrosis through Tgf-Beta1/MyoD homeostasis in head and neck cancer. J Surg Oncol. 2016;114(1):27–31.

    CAS  PubMed  Google Scholar 

  14. 14.

    Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270(11):5872–6.

    CAS  PubMed  Google Scholar 

  15. 15.

    MAHSW Group. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy. Radiother Oncol. 2016;118(2):304–14.

    Google Scholar 

  16. 16.

    Zhou T. Effects of ionizing irradiation on mouse diaphragmatic skeletal muscle. Front Physiol. 2017.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Hardee JP, Puppa MJ, Fix DK, et al. The effect of radiation dose on mouse skeletal muscle remodeling. Radiol Oncol. 2014;48(3):247–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lim X, Bless DM, Munoz-Del-Rio A, Welham NV. Changes in cytokine signaling and extracellular matrix production induced by inflammatory factors in cultured vocal fold fibroblasts. Ann Otol Rhinol Laryngol. 2008;117(3):227–38.

    PubMed  Google Scholar 

  19. 19.

    Birot OJ, Koulmann N, Peinnequin A, Bigard XA. Exercise-induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J Physiol. 2003;552(Pt 1):213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Guzzoni V, Ribeiro MBT, Lopes GN, et al. Effect of resistance training on extracellular matrix adaptations in skeletal muscle of older rats. Front Physiol. 2018;9:374.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Khan HA, Abdelhalim MA, Alhomida AS, Al Ayed MS. Transient increase in IL-1beta, IL-6 and TNF-alpha gene expression in rat liver exposed to gold nanoparticles. Genet Mol Res GMR. 2013;12(4):5851–7.

    CAS  PubMed  Google Scholar 

  22. 22.

    King S, Berchtold C, Thibeault S. Lipopolysaccharide responsiveness in vocal fold fibroblasts. J Inflamm (Lond). 2014.

    Article  Google Scholar 

  23. 23.

    Gallet P, Phulpin B, Merlin JL, et al. Long-term alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS ONE. 2011;6(12):e29399.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Markovics JA, Araya J, Cambier S, et al. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem. 2011;286(42):36864–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res. 1990;122(1):77–85.

    CAS  PubMed  Google Scholar 

  26. 26.

    Franko AJ, Sharplin J, Ghahary A, Barcellos-Hoff MH. Immunohistochemical localization of transforming growth factor beta and tumor necrosis factor alpha in the lungs of fibrosis-prone and "non-fibrosing" mice during the latent period and early phase after irradiation. Radiat Res. 1997;147(2):245–56.

    CAS  PubMed  Google Scholar 

  27. 27.

    Mendias CL, Gumucio JP, Davis ME, Bromley CW, Davis CS, Brooks SV. Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve. 2012;45(1):55–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yamamoto M, Legendre NP, Biswas AA, et al. Loss of MyoD and Myf5 in skeletal muscle stem cells results in altered myogenic programming and failed regeneration. Stem cell reports. 2018;10(3):956–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Schoser BG, Blottner D, Stuerenburg HJ. Matrix metalloproteinases in inflammatory myopathies: enhanced immunoreactivity near atrophic myofibers. Acta Neurol Scand. 2002;105(4):309–13.

    CAS  PubMed  Google Scholar 

  30. 30.

    Kumar A, Collins HM, Scholefield JH, Watson SA. Increased type-IV collagenase (MMP-2 and MMP-9) activity following preoperative radiotherapy in rectal cancer. Br J Cancer. 2000;82(4):960–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yang K, Palm J, Konig J, et al. Matrix-metallo-proteinases and their tissue inhibitors in radiation-induced lung injury. Int J Radiat Biol. 2007;83(10):665–76.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ahtikoski AM, Koskinen SO, Virtanen P, Kovanen V, Risteli J, Takala TE. Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positions. Acta Physiol Scand. 2003;177(4):473–81.

    CAS  PubMed  Google Scholar 

  33. 33.

    Zimowska M, Brzoska E, Swierczynska M, Streminska W, Moraczewski J. Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol. 2008;52(2–3):307–14.

    CAS  PubMed  Google Scholar 

  34. 34.

    Cobos AR, Segade LA, Fuentes I. Muscle fibre types in the suprahyoid muscles of the rat. J Anat. 2001;198(Pt 3):283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mu L, Su H, Wang J, Han Y, Sanders I. Adult human mylohyoid muscle fibers express slow-tonic, alpha-cardiac, and developmental myosin heavy-chain isoforms. Anat Record Part A Discov Mol Cell Evol Biol. 2004;279(2):749–60.

    Google Scholar 

  36. 36.

    Pae EK, Wu J, Nguyen D, Monti R, Harper RM. Geniohyoid muscle properties and myosin heavy chain composition are altered after short-term intermittent hypoxic exposure. J Appl Physiol (1985). 2005;98(3):889–94.

    CAS  Google Scholar 

  37. 37.

    Yan SF, Tritto I, Pinsky D, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells: central role of the binding site for nuclear factor-IL-6. J Biol Chem. 1995;270(19):11463–71.

    CAS  PubMed  Google Scholar 

  38. 38.

    Liu Y, Kudo K, Abe Y, et al. Hypoxia expression in radiation-induced late rectal injury. J Radiat Res. 2008;49(3):261–8.

    CAS  PubMed  Google Scholar 

  39. 39.

    Vujaskovic Z, Anscher MS, Feng QF, et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys. 2001;50(4):851–5.

    CAS  PubMed  Google Scholar 

Download references



Author information



Corresponding author

Correspondence to Suzanne N. King.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, S.N., Al-Quran, Z., Hurley, J. et al. Cytokine and Growth Factor Response in a Rat Model of Radiation Induced Injury to the Submental Muscles. Dysphagia (2020).

Download citation


  • Radiation injury
  • Mylohyoid
  • Geniohyoid
  • Muscle
  • Deglutition
  • Deglutition disorders
  • Swallow