, Volume 33, Issue 5, pp 627–635 | Cite as

Maturation of the Coordination Between Respiration and Deglutition with and Without Recurrent Laryngeal Nerve Lesion in an Animal Model

  • Ashley Ballester
  • François Gould
  • Laura Bond
  • Bethany Stricklen
  • Jocelyn Ohlemacher
  • Andrew Gross
  • Katherine DeLozier
  • Randall Buddington
  • Karyl Buddington
  • Nicole Danos
  • Rebecca GermanEmail author
Original Article


The timing of the occurrence of a swallow in a respiratory cycle is critical for safe swallowing, and changes with infant development. Infants with damage to the recurrent laryngeal nerve, which receives sensory information from the larynx and supplies the intrinsic muscles of the larynx, experience a significant incidence of dysphagia. Using our validated infant pig model, we determined the interaction between this nerve damage and the coordination between respiration and swallowing during postnatal development. We recorded 23 infant pigs at two ages (neonatal and older, pre-weaning) feeding on milk with barium using simultaneous high-speed videofluoroscopy and measurements of thoracic movement. With a complete linear model, we tested for changes with maturation, and whether these changes are the same in control and lesioned individuals. We found (1) the timing of swallowing and respiration coordination changes with maturation; (2) no overall effect of RLN lesion on the timing of coordination, but (3) a greater magnitude of maturational change occurs with RLN injury. We also determined that animals with no surgical intervention did not differ from animals that had surgery for marker placement and a sham procedure for nerve lesion. The coordination between respiration and swallowing changes in normal, intact individuals to provide increased airway protection prior to weaning. Further, in animals with an RLN lesion, the maturation process has a larger effect. Finally, these results suggest a high level of brainstem sensorimotor interactions with respect to these two functions.


Deglutition Respiration Recurrent laryngeal nerve Sensorimotor Infant Development Animal model 



The Authors thank the CMU at NEOMED for their extensive support of this project.


This study was funded by NIH 1R01HD088561 to RZG.

Compliance with Ethical Standards

Conflict of interest

All authors declare they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, and was done in accordance with NEOMED IACUC approval, protocol #17-04-071.


  1. 1.
    Abu-Shaweesh JM. Maturation of respiratory reflex responses in the fetus and neonate. Semin Neonatol. 2004;9(3):169–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Amaizu N, Shulman R, Schanler R, Lau C. Maturation of oral feeding skills in preterm infants. Acta Paediatr. 2008;97(1):61–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Baier DB, Gatesy SM, Dial KP. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running. PLoS ONE. 2013;8(5):e63982.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bautista TG, Xing T, Fong AY, Pilowsky PM. Recurrent laryngeal nerve activity exhibits a 5-HT-mediated long-term facilitation and enhanced response to hypoxia following acute intermittent hypoxia in rat. J Appl Physiol. 2012;112(7):1144–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Bautista TG, Dutschmann M. Ponto-medullary nuclei involved in the generation of sequential pharyngeal swallowing and concomitant protective laryngeal adduction in situ. The Journal of physiology. 2014;592(Pt 12):2605–23.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bautista TG, Fong AY, Dutschmann M. Spontaneous swallowing occurs during autoresuscitation in the in situ brainstem preparation of rat. Respir Physiol Neurobiol. 2014;202C:35–43.CrossRefGoogle Scholar
  7. 7.
    Benjamin JR, Smith PB, Cotten CM, Jaggers J, Goldstein RF, Malcolm WF. Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants. J Perinatol. 2010;30(6):408–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ. X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol. 2010;313(5):262–79.PubMedGoogle Scholar
  9. 9.
    Caminita F, van der Merwe M, Hance B, Krishnan R, Miller S, Buddington K, Buddington RK. A preterm pig model of lung immaturity and spontaneous infant respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L118–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Collaco JM, Aherrera AD, Au Yeung KJ, Lefton-Greif MA, Hoch J, Skinner ML. Interdisciplinary pediatric aerodigestive care and reduction in health care costs and burden. JAMA Otolaryngol Head Neck Surg. 2015;141(2):101–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Crompton AW, Thexton AJ, German RZ. Development of the movement of the epiglottis in infant and juvenile pigs. Zoology. 2008;111:339–49.CrossRefPubMedGoogle Scholar
  12. 12.
    Daya H, Hosni A, Bejar-Solar I, Evans JN, Bailey CM. Pediatric vocal fold paralysis: a long-term retrospective study. Arch Otolaryngol Head Neck Surg. 2000;126(1):21–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Fukuhara T, Gierbolini-Norat EM, Thexton AJ, German RZ. Unilateral superior laryngeal nerve lesion in an animal model of Dysphagia and its effect on sucking and swallowing. Dysphagia. 2013;28:404.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Thexton AJ, German RZ. The effect of unilateral superior laryngeal nerve lesion on swallowing threshold volume. Laryngoscope. 2013;123(8):1942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ding P, Fung GS, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia. 2015;30(1):47–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Evans N. Preterm patent ductus arteriosus: a continuing conundrum for the neonatologist? Semin Fetal Neonatal Med. 2015;20(4):272–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Feldman JL. Chapter 14–looking forward to breathing. In: Progress in brain research, 2011. 188: p. 213–8.Google Scholar
  18. 18.
    Franks HA, German RZ, Crompton AW, Hiiemae KM. Mechanism of intra-oral transport in a herbivore, the hyrax (Procavia syriacus). Arch Oral Biol. 1985;30(7):539–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol. 2014;116(3):291–301.CrossRefPubMedGoogle Scholar
  20. 20.
    German RZ, Franks HA. Timing in the movement of jaws, tongue, and hyoid during feeding in the hyrax, Procavia syriacus. J Exp Zool. 1991;257(1):34–42.CrossRefPubMedGoogle Scholar
  21. 21.
    German RZ, Crompton AW, Levitch LC, Thexton AJ. The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool. 1992;261:322–30.CrossRefPubMedGoogle Scholar
  22. 22.
    German RZ, Crompton AW. Ontogeny of suckling mechanisms in opossums (Didelphis virginiana). Brain Behav Evol. 1996;48(3):157–64.CrossRefPubMedGoogle Scholar
  23. 23.
    German RZ, Crompton AW, McCluskey C, Thexton AJ. Coordination between respiration and deglutition in a preterm infant mammal, Sus scrofa. Arch Oral Biol. 1996;41(6):619–22.CrossRefPubMedGoogle Scholar
  24. 24.
    German RZ, Crompton AW, Thexton AJ. The coordination and interaction between respiration and deglutition in young pigs. J Comp Physiol. 1998;182:539–47.CrossRefGoogle Scholar
  25. 25.
    German RZ, Crompton AW. The ontogeny of feeding in mammals. In: Schwenk K, editor. Feeding: form, function and evolution in tetrapod vertebrates. San Diego: Academic Press; 2000. p. 449–57.Google Scholar
  26. 26.
    German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102(2):1017–25.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26(2):97–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    German RZ, Crompton AW, Gould FD, Thexton AJ. Animal models for Dysphagia studies: what have we learnt so far. Dysphagia. 2017;32(1):73–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gewolb IH, Vice FL. Maturational changes in the rhythms, patterning, and coordination of respiration and swallow during feeding in preterm and term infants. Dev Med Child Neurol. 2006;48(7):589–94.CrossRefPubMedGoogle Scholar
  30. 30.
    Gidmark NJ, Staab KL, Brainerd EL, Hernandez LP. Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio. J Exp Biol. 2012;215(Pt 13):2262–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Gierbolini-Norat E, Holman S, Ding P, Bakshi S, German R. Variation in the timing and frequency of sucking and swallowing over an entire feeding session in the infant pig Sus scrofa. Dysphagia. 2014;29:1–8.CrossRefGoogle Scholar
  32. 32.
    Gould FD, Lammers AR, Ohlemacher J, Ballester A, Fraley L, Gross A, German RZ. The physiologic impact of unilateral recurrent laryngeal nerve (RLN) lesion on infant oropharyngeal and esophageal performance. Dysphagia. 2015;30(6):714–22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gould FD, Ohlemacher J, Lammers AR, Gross A, Ballester A, Fraley L, German RZ. Central nervous system integration of sensorimotor signals in oral and pharyngeal structures: oropharyngeal kinematics response to recurrent laryngeal nerve lesion. J Appl Physiol. 2016;120(5):495–502.CrossRefPubMedGoogle Scholar
  34. 34.
    Gould FDH, Yglesias B, Ohlemacher J, German RZ. Pre-pharyngeal swallow effects of recurrent laryngeal nerve lesion on bolus shape and airway protection in an infant pig model. Dysphagia. 2017;32(3):362–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Greer JJ. Control of breathing activity in the fetus and newborn. Compr Physiol. 2012;2(3):1873–88.PubMedGoogle Scholar
  36. 36.
    Helm JW, German RZ. The epigenetic impact of weaning on craniofacial morphology during growth. J Exp Zool. 1996;276(4):243–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Hernandez-Morato I, Valderrama-Canales FJ, Berdugo G, Arias G, McHanwell S, Sanudo J, Vazquez T, Pascual-Font A. Reorganization of laryngeal motoneurons after crush injury in the recurrent laryngeal nerve of the rat. J Anat. 2013;222(4):451–61.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, Waranch DR, German RZ. Swallowing kinematics and airway protection after palatal local anesthesia in infant pigs. Laryngoscope. 2013;124:436.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Holman SD, Waranch DR, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, German RZ. Sucking and swallowing rates after palatal anesthesia: an electromyographic study in infant pigs. J Neurophysiol. 2013;110(2):387–96.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jadcherla SR, Gupta A, Coley BD, Fernandez S, Shaker R. Esophago-glottal closure reflex in human infants: a novel reflex elicited with concurrent manometry and ultrasonography. Am J Gastroenterol. 2007;102(10):2286–93.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jadcherla SR, Gupta A, Wang M, Coley BD, Fernandez S, Shaker R. Definition and implications of novel pharyngo-glottal reflex in human infants using concurrent manometry ultrasonography. Am J Gastroenterol. 2009;104(10):2572–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kang SL, Samsudin S, Kuruvilla M, Dhelaria A, Kent S, Kelsall WA. Outcome of patent ductus arteriosus ligation in premature infants in the East of England: a prospective cohort study. Cardiol Young. 2013;23(5):711–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Kelly BN, Huckabee M-L, Jones RD, Frampton CMA. The first year of human life: coordinating respiration and nutritive swallowing. Dysphagia. 2007;22:37–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Knight MJ, McDonald SE, Birchall MA. Intrinsic muscles and distribution of the recurrent laryngeal nerve in the pig larynx. Eur Arch Otorhinolaryngol. 2005;262(4):281–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Kupfer RA, Callaghan BC, Hogikyan ND. Neurogenic vocal fold motion impairment after routine intubation for tonsillectomy in a pediatric patient. J Voice. 2014;28(1):112–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Laitman JT, Reidenberg JS. The evolution and development of human swallowing: the most important function we least appreciate. Otolaryngol Clin N Am. 2013;46(6):923–35.CrossRefGoogle Scholar
  47. 47.
    Lau C, Alagugurusamy R, Schanler RJ, Smith EO, Shulman RJ. Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr. 2000;89(7):846–52.CrossRefPubMedGoogle Scholar
  48. 48.
    Lau C, Smith EO, Schanler RJ. Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatr. 2003;92(6):721–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Lau C, Geddes D, Mizuno K, Schaal B. The development of oral feeding skills in infants. Int J Pediatr. 2012;2012:572341.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lefton-Greif MA, Loughlin GM. Specialized studies in pediatric dysphagia. Semin Speech Lang. 1996;17(4):311–29.CrossRefPubMedGoogle Scholar
  51. 51.
    Lefton-Greif MA, Arvedson JC. Pediatric feeding and swallowing disorders: state of health, population trends, and application of the international classification of functioning, disability, and health. Semin Speech Lang. 2007;28(3):161–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Lefton-Greif MA, Okelo SO, Wright JM, Collaco JM, McGrath-Morrow SA, Eakin MN. Impact of children’s feeding/swallowing problems: validation of a new caregiver instrument. Dysphagia. 2014;29(6):671–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mortellaro VE, Pettiford JN, St Peter SD, Fraser JD, Ho B, Wei J. Incidence, diagnosis, and outcomes of vocal fold immobility after esophageal atresia (EA) and/or tracheoesophageal fistula (TEF) repair. Eur J Pediatr Surg. 2011;21(6):386–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Paniello RC. Vocal fold paralysis: improved adductor recovery by vincristine blockade of posterior cricoarytenoid. Laryngoscope. 2014;125:655.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Paniello RC, Rich JT, Debnath NL. Laryngeal adductor function in experimental models of recurrent laryngeal nerve injury. Laryngoscope. 2014;125:E67.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    da Pereira KR, Firpo C, Gasparin M, Teixeira AR, Dornelles S, Bacaltchuk T, Levy DS. Evaluation of swallowing in infants with congenital heart defect. Int Arch Otorhinolaryngol. 2015;19(1):55–60.Google Scholar
  58. 58.
    Pourmoghadam KK, DeCampli WM, Ruzmetov M, Kosko J, Kishawi S, O’Brien M, Cowden A, Piggott K, Fakioglu H. Recurrent laryngeal nerve injury and swallowing dysfunction in neonatal aortic arch repair. Ann Thorac Surg. 2017;104(5):1611–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Prakash M, Johnny JC. Whats special in a child’s larynx? J Pharm Bioallied Sci. 2015;7(Suppl 1):S55–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rasch S, Sangild PT, Gregersen H, Schmidt M, Omari T, Lau C. The preterm piglet—a model in the study of oesophageal development in preterm neonates. Acta Paediatr. 2010;99(2):201–8.PubMedGoogle Scholar
  61. 61.
    Rommel N, van Wijk M, Boets B, Hebbard G, Haslam R, Davidson G, Omari T. Development of pharyngo-esophageal physiology during swallowing in the preterm infant. Neurogastroenterol Motil. 2011;23(10):e401–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Sachdeva R, Hussain E, Moss MM, Schmitz ML, Ray RM, Imamura M, Jaquiss RD. Vocal cord dysfunction and feeding difficulties after pediatric cardiovascular surgery. J Pediatr. 2007;151(3):312–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Sangild PT, Thymann T, Schmidt M, Stoll B, Burrin DG, Buddington RK. Invited review: the preterm pig as a model in pediatric gastroenterology. J Anim Sci. 2013;91(10):4713–29.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tessema B, Roark RM, Pitman MJ, Weissbrod P, Sharma S, Schaefer SD. Observations of recurrent laryngeal nerve injury and recovery using a rat model. Laryngoscope. 2009;119(8):1644–51.CrossRefPubMedGoogle Scholar
  65. 65.
    Thexton AJ, Crompton AW, German RZ. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool. 1998;280(5):327–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Thexton AJ, Crompton AW, Owerkowicz T, German RZ. Correlation between intraoral pressures and tongue movements in the suckling pig. Arch Oral Biol. 2004;49(7):567–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.CrossRefPubMedGoogle Scholar
  68. 68.
    Thexton AJ, Crompton AW, Owerkowicz T, German RZ. Impact of rhythmic oral activity on the timing of muscle activation in the swallow of the decerebrate pig. J Neurophysiol. 2009;101(3):1386–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Tucker AL, Duncan IJ, Millman ST, Friendship RM, Widowski TM. The effect of dentition on feeding development in piglets and on their growth and behavior after weaning. J Anim Sci. 2010;88(7):2277–88.CrossRefPubMedGoogle Scholar
  70. 70.
    Tutor JD, Gosa MM. Dysphagia and aspiration in children. Pediatr Pulmonol. 2012;47(4):321–37.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashley Ballester
    • 1
    • 5
  • François Gould
    • 1
  • Laura Bond
    • 1
  • Bethany Stricklen
    • 1
  • Jocelyn Ohlemacher
    • 1
  • Andrew Gross
    • 1
  • Katherine DeLozier
    • 1
  • Randall Buddington
    • 2
  • Karyl Buddington
    • 3
  • Nicole Danos
    • 4
  • Rebecca German
    • 1
    Email author
  1. 1.Department of Anatomy and NeurobiologyNEOMEDRootstownUSA
  2. 2.School of Health StudiesUniversity of MemphisMemphisUSA
  3. 3.Department of Biological SciencesUniversity of MemphisMemphisUSA
  4. 4.University of San DiegoSan DiegoUSA
  5. 5.Division of Obstetrics and GynecologyAkron General HospitalAkronUSA

Personalised recommendations