, Volume 32, Issue 1, pp 3–10 | Cite as

History of the Use and Impact of Compensatory Strategies in Management of Swallowing Disorders

  • Cathy L. LazarusEmail author

The effects of compensatory strategies to improve swallow safety and/or efficiency have been examined and described since the late 1970s. These strategies have included the use of postures, bolus modifications, and sensory enhancements. Many of these early studies were conducted by Jeri Logemann, Ph.D, a pioneer in the field of dysphagia, and the many researchers in her Swallow Physiology Lab at the Northwestern University. These early studies paved the way for others who examined similar rehabilitation strategies, using sophisticated and higher-tech procedures, often obtaining results that confirmed or supported those found by Dr. Logemann et al. The compensatory strategies discussed in this review are based on information gleaned over the years about systematic shifts in oropharyngeal swallow physiology with bolus modification and postures, as well as changes to bolus flow during the swallow. Implementation of these strategies has historically been based on instrumental examination...


Bolus Volume Pharyngeal Transit Time Pharyngeal Residue Pharyngeal Pressure Bolus Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Logemann JA. Evaluation and treatment of swallowing disorders. San Diego: College Hill; 1983.Google Scholar
  2. 2.
    Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, Sandidge J, Maxwell R, Blair J. MBS measurement tool for swallow impairment–MBSImp: establishing a standard. Dysphagia. 2008;23(4):392–405.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Langmore, S. E. Schatz, K. Olsen, N. Fiberoptic endoscopic examination of swallowing safety: a new procedure. Dysphagia. 1988;2(4)216-219.PubMedCrossRefGoogle Scholar
  4. 4.
    Cook IJ, Dodds WJ, Dantas RO, et al. Timing of videofluoroscopic, manometric events, and bolus transit during the oral and pharyngeal phases of swallowing. Dysphagia. 1989;4(1):8–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Jacob P, Kahrilas PL, Logemann JA, Tracy J, Lazarus C, McLaughlin BT. Bolus viscosity and volume affect strap muscle EMG activity during swallowing. Gastroenterology. 1988;95:873.Google Scholar
  6. 6.
    Palmer PM, Luschei ES, Jaffe D, McCulloch TM. Contributions of individual muscles to the submental surface electromyogram during swallowing. J Speech Lang Hear Res. 1999;42(6):1378–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Reimers-Neils L, Logemann J, Larson C. Viscosity effects on EMG activity in normal swallow. Dysphagia. 1994;9(2):101–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller JL, Watkin KL. The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing. Dysphagia. 1996;11(2):117–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Dantas RO, Kern MK, Massey BT, et al. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol. 1990;258(5):G675–81.PubMedGoogle Scholar
  10. 10.
    Jacob P, Kahrilas PJ, Logemann JA, Shah V, Ha T. Upper esophageal sphincter opening and modulation during swallowing. Gastroenterology. 1989;97(6):1469–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Logemann JA, Kahrilas PJ, Cheng J, et al. Closure mechanisms of laryngeal vestibule during swallow. Am J Physiol. 1992;262(2):G338–44.PubMedGoogle Scholar
  12. 12.
    Nagy A, Molfenter SM, Peladeau-Pigeon M, Stokely S, Steele CM. The effect of bolus volume on hyoid kinematics in healthy swallowing. BioMed Res Int. 2014;2014:738971.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bisch EM, Logemann JA, Rademaker AW, Kahrilas PJ, Lazarus CL. Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res. 1994;37(5):1041–59.PubMedCrossRefGoogle Scholar
  14. 14.
    Lazarus CL, Logemann JA, Rademaker AW, et al. Effects of bolus volume, viscosity, and repeated swallows in nonstroke subjects and stroke patients. Arch Phys Med Rehabil. 1993;74(10):1066–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Dodds WJ, Man KM, Cook IJ, Kahrilas PJ, Stewart ET, Kern MK. Influence of bolus volume on swallow-induced hyoid movement in normal subjects. AJR Am J Roentgenol. 1988;150(6):1307–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95(1):52–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Kahrilas PJ, Logemann JA, Lin S, Ergun GA. Pharyngeal clearance during swallowing: a combined manometric and videofluoroscopic study. Gastroenterology. 1992;103(1):128–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Tracy JF, Logemann JA, Kahrilas PJ, Jacob P, Kobara M, Krugler C. Preliminary observations on the effects of age on oropharyngeal deglutition. Dysphagia. 1989;4(2):90–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Gumbley F, Huckabee ML, Doeltgen SH, Witte U, Moran C. Effects of bolus volume on pharyngeal contact pressure during normal swallowing. Dysphagia. 2008;23(3):280–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Perlman AL, Schultz JG, VanDaele DJ. Effects of age, gender, bolus volume, and bolus viscosity on oropharyngeal pressure during swallowing. J Appl Physiol. 1993;75(1):33–7.PubMedGoogle Scholar
  21. 21.
    Ergun GA, Kahrilas PJ, Lin S, Logemann JA, Harig JM. Shape, volume, and content of the deglutitive pharyngeal chamber imaged by ultrafast computerized tomography. Gastroenterology. 1993;105(5):1396–403.PubMedCrossRefGoogle Scholar
  22. 22.
    Kahrilas PJ, Logemann JA, Krugler C, Flanagan E. Volitional augmentation of upper esophageal sphincter opening during swallowing. Am J Physiol. 1991;260(3):G450–6.PubMedGoogle Scholar
  23. 23.
    Ohmae Y, Logemann JA, Kaiser P, Hanson DG, Kahrilas PJ. Timing of glottic closure during normal swallow. Head Neck. 1995;17(5):394–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Kendall KA, McKenzie S, Leonard RJ, Goncalves MI, Walker A. Timing of events in normal swallowing: a videofluoroscopic study. Dysphagia. 2000;15(2):74–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Cock C, Jones CA, Hammer MJ, Omari TI, McCulloch TM. Modulation of upper esophageal sphincter (UES) relaxation and opening during volume swallowing. Dysphagia. 2016;. doi: 10.1007/s00455-016-9744-4.PubMedGoogle Scholar
  26. 26.
    Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM. Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope. 2010;120(12):2367–73.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Huckabee ML, Macrae PR, Lamvik K. Expanding instrumental options for dysphagia diagnosis and research: ultrasound and manometry. Folia Phoniatrica et Logopaedica. 2015;67:269–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim JH, Kim MS. Lateral pharyngeal wall motion analysis using ultrasonography in stroke patients with dysphagia. Ultrasound Med Biol. 2012;38(12):2058–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Macrae PR, Doeltgen SH, Jones RD, Huckabee ML. Intra- and inter-rater reliability for analysis of hyoid displacement measured with sonography. J Clin Ultrasound. 2012;40(2):74–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Morinier S, Hammoudi K, Marmouset F, Bakhos D, Beutter P, Patat F. Ultrasound analysis of the upper esophageal sphincter during swallowing in healthy subjects. Eur Ann Otorhinolaryngol Head Neck Dis. 2013;130:321–5.CrossRefGoogle Scholar
  31. 31.
    Dantas RO, Dodds WJ. Effect of bolus volume and consistency on swallow-induced submental and infrahyoid electromyographic activity. Braz J Med Biol Res. 1990;23(1):37–44.PubMedGoogle Scholar
  32. 32.
    Pouderoux P, Kahrilas PJ. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterology. 1995;108(5):1418–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Shaker R, Cook IJ, Dodds WJ, Hogan WJ. Pressure-flow dynamics of the oral phase of swallowing. Dysphagia. 1988;3(2):79–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Takahashi J, Nakazawa F. Effects of viscosity of liquids and foods on palatal pressure. J Texture Stud. 1991;22:13–24.CrossRefGoogle Scholar
  35. 35.
    Kahrilas PJ, Lin S, Logemann JA, Ergun GA, Facchini F. Deglutitive tongue action: volume accommodation and bolus propulsion. Gastroenterology. 1993;104(1):152–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Ekberg O, Liedberg B, Owall B. Barium and meat: a comparison between pharyngeal swallow of fluid and solid boluses. Acta Radiol Diagn. 1986;27(6):701–4.CrossRefGoogle Scholar
  37. 37.
    Kendall KA, Leonard RJ, McKenzie SW. Accommodation to changes in bolus viscosity in normal deglutition: a videofluoroscopic study. Ann Otol Rhinol Laryngol. 2001;110(11):1059–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Nagy A, Molfenter SM, Peladeau-Pigeon M, Stokely S, Steele CM. The effect of bolus consistency on hyoid velocity in healthy swallowing. Dysphagia. 2015;30(4):445–51.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Inokuchi H, Gonzalez-Fernandez M, Matsuo K, et al. Electromyography of swallowing with fine wire intramuscular electrodes in healthy human: amplitude difference of selected hyoid muscles. Dysphagia. 2016;31(1):33–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Palmer JB, Rudin NJ, Lara G, Crompton AW. Coordination of mastication and swallowing. Dysphagia. 1992;7(4):187–200.PubMedCrossRefGoogle Scholar
  41. 41.
    Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103(3):823–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones CA, Hoffman MR, Geng Z, Abdelhalim SM, Jiang JJ, McCulloch TM. Reliability of an automated high-resolution manometry analysis program across expert users, novice users, and speech-language pathologists. J Speech Lang Hear Res. 2014;57(3):831–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Knigge MA, Thibeault S, McCulloch TM. Implementation of high-resolution manometry in the clinical practice of speech language pathology. Dysphagia. 2014;29(1):2–16.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Omari TI, Savilampi J, Kokkinn K, et al. The reliability of pharyngeal high resolution manometry with impedance for derivation of measures of swallowing function in healthy volunteers. Int J Otolaryngol. 2016;2016:2718482.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bardan E, Kern M, Arndorfer RC, Hofmann C, Shaker R. Effect of aging on bolus kinematics during the pharyngeal phase of swallowing. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G458–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Dejaeger E, Pelemans W, Ponette E, Joosten E. Mechanisms involved in postdeglutition retention in the elderly. Dysphagia. 1997;12(2):63–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Leonard RJ, Kendall KA, McKenzie S, Goncalves MI, Walker A. Structural displacements in normal swallowing: a videofluoroscopic study. Dysphagia. 2000;15(3):146–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA, Kahrilas PJ, Smith CH. Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older men. J Speech Lang Hear Res. 2000;43(5):1264–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Rademaker AW, Pauloski BR, Colangelo LA, Logemann JA. Age and volume effects on liquid swallowing function in normal women. J Speech Lang Hear Res. 1998;41(2):275–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Dua KS, Surapaneni SN, Kuribayashi S, Hafeezullah M, Shaker R. Effect of aging on hypopharyngeal safe volume and the aerodigestive reflexes protecting the airways. The Laryngoscope. 2014;124(8):1862-1868.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med. 1997;103(5A):74S–6S.PubMedCrossRefGoogle Scholar
  52. 52.
    Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology. 1994;107(2):396–402.PubMedCrossRefGoogle Scholar
  53. 53.
    Pelletier CA, Steele CM. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women. Journal of speech, language and hearing research: JSLHR. 2014;57(1):46-56.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Logemann JA, Gensler G, Robbins J, Lindblad AS, Brandt D, Hind JA, Kosek S, Dikeman K, Kazandjian M, Gramigna GD, Lundy D, McGarvey-Toler S, Miller Gardner PJ. A randomized study of three interventions for aspiration of thin liquids in patients with dementia or Parkinson’s disease. J Speech Lang Hear Res 2008;51(1):173–83.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Robbins J, Gensler G, Hind J, et al. Comparison of 2 interventions for liquid aspiration on pneumonia incidence: a randomized trial. Ann Intern Med. 2008;148(7):509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Welch MV, Logemann JA, Rademaker AW, Kahrilas PJ. Changes in pharyngeal dimensions effected by chin tuck. Arch Phys Med Rehabil. 1993;74(2):178–81.PubMedGoogle Scholar
  57. 57.
    Macrae P, Anderson C, Humbert I. Mechanisms of airway protection during chin-down swallowing. J Speech Lang Hear Res. 2014;57(4):1251–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Shanahan TK, Logemann JA, Rademaker AW, Pauloski BR, Kahrilas PJ. Chin-down posture effect on aspiration in dysphagic patients. Arch Phys Med Rehabil. 1993;74(7):736–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Balou M, McCullough GH, Aduli F, et al. Manometric measures of head rotation and chin tuck in healthy participants. Dysphagia. 2014;29(1):25–32.PubMedCrossRefGoogle Scholar
  60. 60.
    McCulloch TM, Hoffman MR, Ciucci MR. High-resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol. 2010;119(6):369–76.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lewin JS, Hebert TM, Putnam JB Jr, DuBrow RA. Experience with the chin tuck maneuver in postesophagectomy aspirators. Dysphagia. 2001;16(3):216–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Logemann JA, Rademaker AW, Pauloski BR, Kahrilas PJ. Effects of postural change on aspiration in head and neck surgical patients. Otolaryngol Head Neck Surg. 1994;110(2):222–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Rasley A, Logemann JA, Kahrilas PJ, Rademaker AW, Pauloski BR, Dodds WJ. Prevention of barium aspiration during videofluoroscopic swallowing studies: value of change in posture. AJR Am J Roentgenol. 1993;160(5):1005–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Martin BJ, Logemann JA, Shaker R, Dodds WJ. Normal laryngeal valving patterns during three breath-hold maneuvers: a pilot investigation. Dysphagia. 1993;8(1):11–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Logemann JA, Kahrilas PJ, Kobara M, Vakil NB. The benefit of head rotation on pharyngoesophageal dysphagia. Arch Phys Med Rehabil. 1989;70(10):767–71.PubMedGoogle Scholar
  66. 66.
    Ohmae Y, Ogura M, Kitahara S, Karaho T, Inouye T. Effects of head rotation on pharyngeal function during normal swallow. Ann Otol Rhinol Laryngol. 1998;107(4):344–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim CK, Ryu JS, Song SH, et al. Effects of head rotation and head tilt on pharyngeal pressure events using high resolution manometry. Ann Rehabil Med. 2015;39(3):425–31.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Takasaki K, Umeki H, Kumagami H, Takahashi H. Influence of head rotation on upper esophageal sphincter pressure evaluated by high-resolution manometry system. Otolaryngol–Head Neck Surg. 2010;142(2):214–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakayama E, Kagaya H, Saitoh E, et al. Changes in pyriform sinus morphology in the head rotated position as assessed by 320-row area detector CT. Dysphagia. 2013;28(2):199–204.PubMedCrossRefGoogle Scholar
  70. 70.
    Nagy A, Peladeau-Pigeon M, Valenzano TJ, Namasivayam AM, Steele CM. The effectiveness of the head-turn-plus-chin-down maneuver for eliminating vallecular residue. CoDAS. 2016;28(2):113–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Logemann JA. Manual for the videofluorographic study of swallowing. Austin: Pro-Ed; 1993.Google Scholar
  72. 72.
    Drake W, O’donoghue S, Bartram C, Lindsay J, Greenwood R. Case study eating in side lying facilitates rehabilitation in neurogenic dysphagia. Brain Inj. 2016;11(2):137–42.CrossRefGoogle Scholar
  73. 73.
    Lazzara G, Lazarus C, Logemann J. Effects of thermal stimulation on patients with swallowing disorders—a videofluoroscopic analysis. Dysphagia. 1986;1:73–77.CrossRefGoogle Scholar
  74. 74.
    Rosenbek JC, Roecker EB, Wood JL, Robbins J. Thermal application reduces the duration of stage transition in dysphagia after stroke. Dysphagia. 1996;11(4):225–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Fujiu M, Toleikis JR, Logemann JA, Larson CR. Glossopharyngeal evoked potentials in normal subjects following mechanical stimulation of the anterior faucial pillar. Electroencephalogr Clin Neurophysiol. 1994;92(3):183–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Theurer JA, Johnston JL, Fisher J, et al. Proof-of-principle pilot study of oropharyngeal air-pulse application in individuals with dysphagia after hemispheric stroke. Arch Phys Med Rehabil. 2013;94(6):1088–94.PubMedCrossRefGoogle Scholar
  77. 77.
    Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42(1):285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Soros P, Lalone E, Smith R, et al. Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience. 2008;153(4):1300–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Fraser C, Power M, Hamdy S, et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron. 2002;34(5):831–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Power M, Fraser C, Hobson A, et al. Changes in pharyngeal corticobulbar excitability and swallowing behavior after oral stimulation. Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G45–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Ludlow CL, Humbert I, Saxon K, Poletto C, Sonies B, Crujido L. Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal Dysphagia. Dysphagia. 2007;22(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Burnett TA, Mann EA, Cornell SA, Ludlow CL. Laryngeal elevation achieved by neuromuscular stimulation at rest. J Appl Physiol. 2003;94(1):128–34.PubMedCrossRefGoogle Scholar
  83. 83.
    Langmore SE, McCulloch TM, Krisciunas GP, et al. Efficacy of electrical stimulation and exercise for dysphagia in patients with head and neck cancer: a randomized clinical trial. Head & Neck. 2015;38:E1221–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Bath PM, Scutt P, Love J, et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke. 2016;47(6):1562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Suiter DM, Leder SB, Ruark JL. Effects of neuromuscular electrical stimulation on submental muscle activity. Dysphagia. 2006;21(1):56–60.PubMedCrossRefGoogle Scholar
  86. 86.
    Carnaby-Mann GD, Crary MA. Examining the evidence on neuromuscular electrical stimulation for swallowing: a meta-analysis. Arch Otolaryngol Head Neck Surg. 2007;133(6):564–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Clark H, Lazarus C, Arvedson J, Schooling T, Frymark T. Evidence-based systematic review: effects of neuromuscular electrical stimulation on swallowing and neural activation. Am J Speech Lang Pathol. 2009;18(4):361–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Logemann JA, Pauloski BR, Colangelo L, Lazarus C, Fujiu M, Kahrilas PJ. Effects of a sour bolus on oropharyngeal swallowing measures in patients with neurogenic dysphagia. J Speech Hear Res. 1995;38(3):556–63.PubMedCrossRefGoogle Scholar
  89. 89.
    Palmer PM, McCulloch TM, Jaffe D, Neel AT. Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region. Dysphagia. 2005;20(3):210–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28.PubMedCrossRefGoogle Scholar
  91. 91.
    Miura Y, Morita Y, Koizumi H, Shingai T. Effects of taste solutions, carbonation, and cold stimulus on the power frequency content of swallowing submental surface electromyography. Chem Senses. 2009;34(4):325–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Steele CM, van Lieshout PH, Pelletier CA. The influence of stimulus taste and chemesthesis on tongue movement timing in swallowing. Journal of speech, language, and hearing research : JSLHR. 2012;55(1):262–75.PubMedCrossRefGoogle Scholar
  93. 93.
    Pelletier CA, Lawless HT. Effect of citric acid and citric acid-sucrose mixtures on swallowing in neurogenic oropharyngeal dysphagia. Dysphagia. 2003;18(4):231–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Pauloski BR, Logemann JA, Rademaker AW, et al. Effects of enhanced bolus flavors on oropharyngeal swallow in patients treated for head and neck cancer. Head Neck. 2013;35(8):1124–31.PubMedCrossRefGoogle Scholar
  95. 95.
    Elshukri O, Michou E, Mentz H, Hamdy S. Brain and behavioral effects of swallowing carbonated water on the human pharyngeal motor system. J Appl Physiol. 2016;120(4):408–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Krival K, Bates C. Effects of club soda and ginger brew on linguapalatal pressures in healthy swallowing. Dysphagia. 2012;27(2):228–39.PubMedCrossRefGoogle Scholar
  97. 97.
    Moritaka H, Kitade M, Sawamura S, et al. Effect of carbon dioxide in carbonated drinks on linguapalatal swallowing pressure. Chem Senses. 2014;39(2):133–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Cola PC, Gatto AR, da Silva RG, et al. Taste and temperature in swallowing transit time after stroke. Cerebrovasc Dis Extra. 2012;2(1):45–51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gatto AR, Cola PC, Silva RG, et al. Sour taste and cold temperature in the oral phase of swallowing in patients after stroke. CoDAS. 2013;25(2):164–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Selcuk B, Uysal H, Aydogdu I, Akyuz M, Ertekin C. Effect of temperature on electrophysiological parameters of swallowing. J Rehabil Res Dev. 2007;44(3):373–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Michou E, Mastan A, Ahmed S, Mistry S, Hamdy S. Examining the role of carbonation and temperature on water swallowing performance: a swallowing reaction-time study. Chem Senses. 2012;37(9):799–807.PubMedCrossRefGoogle Scholar
  102. 102.
    Bove M, Mansson I, Eliasson I. Thermal oral-pharyngeal stimulation and elicitation of swallowing. Acta Otolaryngol. 1998;118(5):728–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Langmore SE, Terpenning MS, Schork A, et al. Predictors of aspiration pneumonia: how important is dysphagia? Dysphagia. 1998;13(2):69–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Lundy DS, Smith C, Colangelo L, et al. Aspiration: cause and implications. Otolaryngol Head Neck Surg. 1999;120(4):474–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Neumann S. Swallowing therapy with neurologic patients: results of direct and indirect therapy methods in 66 patients suffering from neurological disorders. Dysphagia. 1993;8(2):150–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Otolaryngology Head and Neck SurgeryMount Sinai Beth IsraelNew YorkUSA
  2. 2.Department of Otolaryngology Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.THANC FoundationNew YorkUSA

Personalised recommendations