Advertisement

Dysphagia

, Volume 32, Issue 1, pp 73–77 | Cite as

Animal Models for Dysphagia Studies: What Have We Learnt So Far

  • Rebecca Z. GermanEmail author
  • A. W. Crompton
  • Francois D. H. Gould
  • Allan J. Thexton
Review

Abstract

Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes.

Keywords

Animal models Performance Pathophysiology Deglutition Deglutition disorders 

Notes

Acknowledgements

The work of the authors has been supported by multiple grants from the NIH over the last 40 years, including AR18140, DC3604, DC6953, DC9980, DE5526, DE 5738, DE7325, and HD8856. We dedicate this paper to our late colleague and mentor Dr. Karen Hiiemae.

Compliance with Ethical Standards

Conflicts of interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Arce-McShane FI, Hatsopoulos NG, Lee JC, Ross CF, Sessle BJ. Modulation dynamics in the orofacial sensorimotor cortex during motor skill acquisition. J Neurosci. 2014;34(17):5985–97.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arce-McShane FI, Ross CF, Takahashi K, Sessle BJ, Hatsopoulos NG. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proc Natl Acad Sci USA. 2016;113(18):5083–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arce FI, Lee JC, Ross CF, Sessle BJ, Hatsopoulos NG. Directional information from neuronal ensembles in the primate orofacial sensorimotor cortex. J Neurophysiol. 2013;110(6):1357–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL. Laryngeal activity during upright vs. supine swallowing. J Appl Physiol (1985). 2002;93(2):740–5.CrossRefGoogle Scholar
  5. 5.
    Best MD, Nakamura Y, Kijak NA, Allen MJ, Lever TE, Hatsopoulos NG, Ross CF, Takahashi K. Semiautomatic marker tracking of tongue positions captured by videofluoroscopy during primate feeding. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5347–50.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Blitzer A, et al. Recommendations of the neurolaryngology study group on laryngeal electromyography. Otolaryngol–Head Neck Surg. 2009;140(6):782–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Campbell-Malone R, Crompton AW, Thexton AJ, German RZ. Ontogenetic changes in mammalian feeding: insights from electromyographic data. Integr Comp Biol. 2011;51(2):282–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ciucci MR, Russell JA, Schaser AJ, Doll EJ, Vinney LM, Connor NP. Tongue force and timing deficits in a rat model of Parkinson disease. Behav Brain Res. 2011;222(2):315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crompton AW, Thexton AJ, German RZ. Development of the movement of the epiglottis in infant and juvenile pigs. Zoology. 2008;111:339–49.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Daniels SK. Letter by Daniels regarding article silent aspiration risk is volume-dependent. Dysphagia. 2012;27(2):294.CrossRefPubMedGoogle Scholar
  11. 11.
    Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Thexton AJ, German RZ. The effect of unilateral superior laryngeal nerve lesion on swallowing threshold volume. The Laryngoscope. 2013;123(8):1942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ding P, Fung GS, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia. 2015;30(1):47–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Fukuhara T, Tsujimura T, Kajii Y, Yamamura K, Inoue M. Effects of electrical stimulation of the superior laryngeal nerve on the jaw-opening reflex. Brain Res. 2011;1391:44–53.CrossRefPubMedGoogle Scholar
  14. 14.
    German RZ, Crompton AW, Levitch LC, Thexton AJ. The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool. 1992;261:322–30.CrossRefPubMedGoogle Scholar
  15. 15.
    German RZ, Crompton AW, Thexton AJ. The coordination and interaction between respiration and deglutition in young pigs. J Comp Physiol (A). 1998;182:539–47.CrossRefGoogle Scholar
  16. 16.
    Gould FD, Lammers AR, Ohlemacher J, Ballester A, Fraley L, Gross A, German RZ. The physiologic impact of unilateral recurrent laryngeal nerve (RLN) lesion on infant oropharyngeal and esophageal performance. Dysphagia. 2015;30(6):714–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hiraba H, Sato T. Cortical control for mastication in cats: changes in masticatory movements following lesions in the masticatory cortex. Somatosens Mot Res. 2005;22(3):171–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, Waranch DR, German RZ. Swallowing kinematics and airway protection after palatal local anesthesia in infant pigs. The Laryngoscope. 2013. doi: 10.1002/lary.24204.Google Scholar
  19. 19.
    Ikeda J, Kojima N, Saeki K, Ishihara M, Takayama M. Perindopril increases the swallowing reflex by inhibiting substance P degradation and tyrosine hydroxylase activation in a rat model of dysphagia. Eur J Pharmacol. 2015;746:126–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Inokuchi H, Gonzalez-Fernandez M, Matsuo K, Brodsky MB, Yoda M, Taniguchi H, Okazaki H, Hiraoka T, Palmer JB. Electromyography of swallowing with fine wire intramuscular electrodes in healthy human: activation sequence of selected hyoid muscles. Dysphagia. 2014;29(6):713–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Inokuchi H, Gonzalez-Fernandez M, Matsuo K, Brodsky MB, Yoda M, Taniguchi H, Okazaki H, Hiraoka T, Palmer JB. Electromyography of swallowing with fine wire intramuscular electrodes in healthy human: amplitude difference of selected hyoid muscles. Dysphagia. 2016;31(1):33–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Kelm-Nelson CA, Yang KM, Ciucci MR. Exercise effects on early vocal ultrasonic communication dysfunction in a PINK1 knockout model of Parkinson’s disease. J Parkinsons Dis. 2015;5(4):749–63.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kelm-Nelson CA, Stevenson SA, Ciucci MR. Data in support of qPCR primer design and verification in a Pink1 -/- rat model of Parkinson disease. Data Brief. 2016;8:360–3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lang IM, Dana N, Medda BK, Shaker R. Mechanisms of airway protection during retching, vomiting, and swallowing. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G529–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Lang IM, Medda BK, Shaker R. Differential activation of medullary vagal nuclei caused by stimulation of different esophageal mechanoreceptors. Brain Res. 2011;1368:119–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Lang IM, Medda BK, Jadcherla S, Shaker R. The role of the superior laryngeal nerve in esophageal reflexes. Am J Physiol Gastrointest Liver Physiol. 2012;302(12):G1445–57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lang IM. The physiology of eructation. Dysphagia. 2016;31(2):121–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Lever TE, Simon E, Cox KT, Capra NF, O’Brien KF, Hough MS, Murashov AK. A mouse model of pharyngeal dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2010;25(2):112–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Lever TE, Brooks RT, Thombs LA, Littrell LL, Harris RA, Allen MJ, Kadosh MD, Robbins KL. Videofluoroscopic validation of a translational murine model of presbyphagia. Dysphagia. 2015;30(3):328–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Lilienfeld AM, The Fielding H. Garrison lecture: ceteris paribus: the evolution of the clinical trial. Bull Hist Med. 1982;56(1):1–18.PubMedGoogle Scholar
  31. 31.
    Liu Z, Yamamura B, Shcherbatyy V, Green J. Regional volumetric change of the tongue during mastication in pigs. J Oral Rehabil. 2008;35(8):604–12.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ma D, Shuler JM, Kumar A, Stanford QR, Tungtur S, Nishimune H, Stanford JA. Effects of tongue force training on bulbar motor function in the female SOD1-G93A rat model of amyotrophic lateral sclerosis. Neurorehabil Neural Repair. 2016. doi: 10.1177/1545968316666956.PubMedGoogle Scholar
  33. 33.
    Macrae PR, Jones RD, Huckabee ML. The effect of swallowing treatments on corticobulbar excitability: a review of transcranial magnetic stimulation induced motor evoked potentials. J Neurosci Methods. 2014;233:89–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Magara J, Michou E, Raginis-Zborowska A, Inoue M, Hamdy S. Exploring the effects of synchronous pharyngeal electrical stimulation with swallowing carbonated water on cortical excitability in the human pharyngeal motor system. Neurogastroenterol Motil. 2016;28(9):1391–400.CrossRefPubMedGoogle Scholar
  35. 35.
    Michou E, Mistry S, Jefferson S, Tyrrell P, Hamdy S. Characterizing the mechanisms of central and peripheral forms of neurostimulation in chronic dysphagic stroke patients. Brain Stimul. 2014;7(1):66–73.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Morishima Y, Chida K, Watanabe H. Estimation of the dose of radiation received by patient and physician during a videofluoroscopic swallowing study. Dysphagia. 2016;31(4):574–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Nuckolls AL, Worley C, Leto C, Zhang H, Morris JK, Stanford JA. Tongue force and tongue motility are differently affected by unilateral vs bilateral nigrostriatal dopamine depletion in rats. Behav Brain Res. 2012;234(2):343–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Park AM, Bhatt NK, Paniello RC. Paclitaxel inhibits post-traumatic recurrent laryngeal nerve regeneration into the posterior cricoarytenoid muscle in a canine model. Laryngoscope. 2016. doi: 10.1002/lary.26058.Google Scholar
  39. 39.
    Pisegna JM, Kaneoka A, Pearson WG Jr, Kumar S, Langmore SE. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. Clin Neurophysiol. 2016;127(1):956–68.CrossRefPubMedGoogle Scholar
  40. 40.
    Ramsey D, Smithard D, Kalra L. Silent aspiration: what do we know? Dysphagia. 2005;20(3):218–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Ravosa MJ, Vinyard CJ, Gagnon M, Islam SA. Evolution of anthropoid jaw loading and kinematic patterns. Am J Phys Anthropol. 2000;112(4):493–516.CrossRefPubMedGoogle Scholar
  42. 42.
    Russell JA, Ciucci MR, Hammer MJ, Connor NP. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease. Dysphagia. 2013;28(1):95–104.CrossRefPubMedGoogle Scholar
  43. 43.
    Satoh Y, Tsuji K, Tsujimura T, Ishizuka K, Inoue M. Suppression of the swallowing reflex by stimulation of the red nucleus. Brain Res Bull. 2015;116:25–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Sugiyama N, Nishiyama E, Nishikawa Y, Sasamura T, Nakade S, Okawa K, Nagasawa T, Yuki A. A novel animal model of dysphagia following stroke. Dysphagia. 2014;29(1):61–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102(2):587–600.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuji K, Tsujimura T, Magara J, Sakai S, Nakamura Y, Inoue M. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats. Brain Res Bull. 2015;111:53–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Tsujimura T, Tsuji K, Ariyasinghe S, Fukuhara T, Yamada A, Hayashi H, Nakamura Y, Iwata K, Inoue M. Differential involvement of two cortical masticatory areas in modulation of the swallowing reflex in rats. Neurosci Lett. 2012;528(2):159–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Vinyard CJ, Williams SH, Wall CE, Johnson KR, Hylander WL. Jaw-muscle electromyography during chewing in Belanger’s treeshrews (Tupaia belangeri). Am J Phys Anthropol. 2005;127(1):26–45.CrossRefPubMedGoogle Scholar
  49. 49.
    Vinyard CJ, Wall CE, Williams SH, Johnson KR, Hylander WL. Masseter electromyography during chewing in ring-tailed lemurs (Lemur catta). Am J Phys Anthropol. 2006;130(1):85–95.CrossRefPubMedGoogle Scholar
  50. 50.
    Wall CE, Vinyard CJ, Johnson KR, Williams SH, Hylander WL. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am J Phys Anthropol. 2006;129(2):215–24.CrossRefPubMedGoogle Scholar
  51. 51.
    Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB, Studenski SA, Ershler WB, Harris T, Fried LP. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American geriatrics society/National Institute on Aging Research Conference on frailty in older adults. J Am Geriatr Soc. 2006;54(6):991–1001.CrossRefPubMedGoogle Scholar
  52. 52.
    Wirth R, et al. Oropharyngeal dysphagia in older persons—from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clin Interv Aging. 2016;11:189–208.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Anatomy and NeuroscienceNortheast Ohio Medical UniversityRootstownUSA
  2. 2.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  3. 3.Division of PhysiologyKing’s CollegeLondonUK

Personalised recommendations