Ertekin C, Aydogdu I, Yuceyar N, Kiylioglu N, Tarlaci S, Uludag B. Pathophysiological mechanisms of oropharyngeal dysphagia in amyotrophic lateral sclerosis. Brain. 2000;123:125–40.
Article
PubMed
Google Scholar
Han TR, Paik NJ, Park JW. Quantifying swallowing function after stroke: a functional dysphagia scale based on videofluoroscopic studies. Arch Phys Med Rehab. 2001;82:677–82.
CAS
Article
Google Scholar
Ryu JS, Kang JY, Park JY, et al. The effect of electrical stimulation therapy on dysphagia following treatment for head and neck cancer. Oral Oncol. 2009;45:665–8.
Article
PubMed
Google Scholar
Golabbakhsh M, Rajaei A, Derakhshan M, Sadri S, Taheri M, Adibi P. Automated acoustic analysis in detection of spontaneous swallows in Parkinson’s disease. Dysphagia. 2014;29:572–7.
Article
PubMed
Google Scholar
DeFabrizio ME, Rajappa A. Contemporary approaches to dysphagia management. J Nurse Pract. 2010;6:622–30.
Article
Google Scholar
Yamamura K, Kitagawa J, Kurose M, et al. Neural mechanisms of swallowing and effects of taste and other stimuli on swallow initiation. Biol Pharm Bull. 2010;33:1786–90.
CAS
Article
PubMed
Google Scholar
US Census 2010—US Census Bureau. Populations Projections Program. Department of Commerce, Population Division. Accessed https://www.census.gov/aian/census_2010/.
DJO Global. Who is Affected: dysphagia by the numbers. DJO Global. Accessed http://www.djoglobal.com/vitalstim/what-dysphagia/who-affected.
Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke incidence, diagnosis, and pulmonary complications. Stroke. 2005;36:2756–63.
Article
PubMed
Google Scholar
Lazareck LJ, Moussavi ZM. Classification of normal and dysphagic swallows by acoustical means. IEEE Trans Biomed Eng. 2004;51:2103–12.
Article
PubMed
Google Scholar
Smith NR, Klongtruagrok T, DeSouza GN, Shyu CR, Dietrich M, Page MP. Non-invasive ambulatory monitoring of complex sEMG patterns and its potential application in the detection of vocal dysfunctions. E-Health networking, applications and services (Healthcom), 2014 IEEE 16th international conference on. 2014: pp 447–452.
Imtiaz U, Yamamura K, Kong W, Sessa S, Lin Z, Bartolomeo L, Takanishi A. Application of wireless inertial measurement units and EMG sensors for studying deglutition—preliminary results. International Conference IEEE EMBC. 2014: pp 5381–5384.
Kalantarian H, Alshurafa N, Le T, Sarrafzadeh M. Monitoring eating habits using a piezo electric sensor-based necklace. Comput Biol Med. 2015;58:46–55.
Article
PubMed
Google Scholar
Paik NJ, Kim SJ, Lee HJ, Jeon JY, Lim JY, Han TR. Movement of the hyoid bone and the epiglottis during swallowing in patients with dysphagia from different etiologies. J Electromyogr Kines. 2008;18:329–35.
Article
Google Scholar
Lee SI, Yoo JY, Kim M, Ryu JS. Changes of timing variables in swallowing of boluses with different viscosities in patients with dysphagia. Arch Phys Med Rehab. 2013;94:120–6.
Article
Google Scholar
Wang TG, Chang YC, Chen WS, Lin PH, Hsiao TY. Reduction in hyoid bone forward movement in irradiated nasopharyngeal carcinoma patients with dysphagia. Arch Phys Med Rehabil. 2010;91:926–31.
Article
PubMed
Google Scholar
Stoeckli SJ, Huisman TA, Seifert BA, Martin Harris BJ. Interrater reliability of videofluoroscopic swallow evaluation. Dysphagia. 2003;18:53–7.
Article
PubMed
Google Scholar
Kim DH, Choi KH, Kim HM, et al. Inter-rater reliability of videofluoroscopic dysphagia scale. Ann Phys Rehabil Med. 2012;36:791–6.
Article
Google Scholar
Kellen PM, Becker DL, Reinhardt JM, Van Daele DJ. Computer-assisted assessment of hyoid bone motion from videofluoroscopic swallow studies. Dysphagia. 2010;25:298–306.
Article
PubMed
Google Scholar
Canny J. A Computational Approach To Edge Detection. IEEE Trans Pattern Anal Mach Intell. 1986;8:679–98.
CAS
Article
PubMed
Google Scholar
Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 1996;29:51–9.
Article
Google Scholar
Ojala T, Pietikäinen M, Mäenpää TT. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell. 2002;24:971–87.
Article
Google Scholar
Mccullouh GH, Wertz RT, Rosenbek JC. Sensitivity and specificity of clinical/bedside examination signs for detecting aspiration in adults subsequent to stroke. J Commun Disord. 2001;34:55–72.
Article
Google Scholar
Daniels SK, Ballo LA, Mahoney MC, Foundas AL. Clinical predictors of dysphagia and aspiration risk: outcome measures in acute stroke patients. Arch Phys Med Rehabil. 2000;81:1030–3.
CAS
Article
PubMed
Google Scholar
Jensen K, Lambertsen K, Grau C. Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol. 2007;85:74–82.
Article
PubMed
Google Scholar
O’Neil KH, Purdy M, Falk J, Gallo L. The dysphagia outcome and severity scale. Dysphagia. 1999;14:139–45.
Article
PubMed
Google Scholar
Aboofazeli M, Moussavi Z. Analysis and classification of swallowing sounds using reconstructed phase space features. International Conference IEEE ICASSP’05. 2005: pp 421–424.
Spadotto AA, Gatto AR, Guido RC, Montagnoli AN, Cola PC, Pereira JC, Schelp AO. Classification of normal swallowing and oropharyngeal dysphagia using wavelet. Appl Math Comput. 2009;207:75–82.
Google Scholar
Aung SH, Goulermas JY, Hamdy S. Spatiotemporal visualizations for the measurement of oropharyngeal transit time from videofluoroscopy. IEEE Trans Biomed Eng. 2010;57:432–41.
Article
PubMed
Google Scholar
Hsu CC, Chen WH, Chiu HC. Using swallow sound and surface electromyography to determine the severity of dysphagia in patients with myasthenia gravis. Biomed Signal Process Control. 2013;8:432–41.
Article
Google Scholar
Reddy NP, Thomas R, Canilang EP, Casterline J. Toward classification of dysphagic patients using biomechanical measurements. J Rehab Res Develop. 1994;31:335–44.
CAS
Google Scholar
Suryanarayanana S, Reddy NP, Canilang EP. A fuzzy logic diagnosis system for classification of pharyngeal dysphagia. Int J Biomed Comput. 1995;38:207–15.
Article
Google Scholar
Chaves RDD, Mangilli LD, Sassi FC, Jayanthi SK, Zilberstein B, Andrade CRFD. Two-dimensional perceptual videofluoroscopic swallowing analysis of the pharyngeal phase in patients older than 50 years. Arq Bras Cir Dig. 2013;26:274–9.
Article
Google Scholar
Pearson WG Jr, Molfenter SM, Smith ZM, Steele CM. Image-based measurement of post-swallow residue: the normalized residue ratio scale. Dysphagia. 2013;28:167–77.
Article
PubMed
Google Scholar
Kim Y, McCullough GH. Maximal hyoid excursion in poststroke patients. Dysphagia. 2010;25:20–5.
Article
PubMed
Google Scholar
Molfenter SM, Steele CM. Kinematic and temporal factors associated with penetration-aspiration in swallowing liquids. Dysphagia. 2014;29:269–76.
Article
PubMed
PubMed Central
Google Scholar
Bingjie L, Tong Z, Xinting S, Jianmin X, Guijun J. Quantitative videofluoroscopic analysis of penetration-aspiration in post-stroke patients. Neurol India. 2010;58:42–7.
Article
PubMed
Google Scholar
Inamoto Y, Fujii N, Saitoh E, Baba M, Okada S, Katada K, Palmer JB. Evaluation of swallowing using 320-detector-row multislice CT Part II: kinematic analysis of laryngeal closure during normal swallowing. Dysphagia. 2011;26:209–17.
Article
PubMed
Google Scholar
Okada T, Aoyagi Y, Inamoto Y, Saitoh E, Kagaya H, Shibata S, Ueda K. Dynamic change in hyoid muscle length associated with trajectory of hyoid bone during swallowing: analysis using 320-row area detector computed tomography. J Appl Physiol. 2013;115:1138–45.
Article
PubMed
Google Scholar