, Volume 30, Issue 6, pp 759–767 | Cite as

New Swallowing Evaluation Using Piezoelectricity in Normal Individuals

  • Yuichiro Sogawa
  • Shinji KimuraEmail author
  • Toru Harigai
  • Naoki Sakurai
  • Akira Toyosato
  • Taro Nishikawa
  • Makoto Inoue
  • Akira Murasawa
  • Naoto Endo
Original Article


This study aimed to elucidate the relationship between the piezoelectric waveform latency, hyoid bone movement, surface electromyogram (sEMG), and the pharyngeal transit time (PTT) during swallowing. Forty-one healthy subjects were divided into three age groups: younger (20–39 years, n = 8), middle-aged (40–59 years, n = 9), and older (60–79 years, n = 24). Motion analysis of the hyoid bone using videofluorography (VF), waveform analysis of the front neck using piezoelectric films, and sEMG of the suprahyoid muscle group were performed simultaneously. Latencies of the three movement phases were defined as upward (VFS1), forward (VFS2), and returning to starting position (VFS3). The three phases of the piezoelectric waveform—from wave initiation of the negative wave to the start of the second deep negative wave; from the start of the second deep negative wave to the start of the last positive wave (SLPW); and from the SLPW to the end of the last positive wave—were defined as PS1, PS2, and PS3, respectively. VFS1-3 and PS1-3 were significantly correlated. VFS1 and PS1 latencies were significantly longer with thick liquid than with thin liquid. VFS2, PS1, and PS2 latencies were longer in the older group than in the other two groups. The start of PS1 was nearly equal to those of sEMG and VFS1. Bolus arrival time in the valleculae was statistically equal to the end of the PS1 with both thin and thick liquids. To establish the swallowing screening using Piezoelectric film, further investigation is necessary in the dysphagia patients.


Swallowing Piezoelectricity Videofluorography Hyoid bone Aging Correlation Deglutition Deglutition disorders 


Compliance with Ethical Standards


This study was supported by a Grant-in-Aid for Scientific Research (No. 24500574 and 15K01362 to S. Kimura) from the Ministry of Education, Culture and Science: Japan.

Conflict of Interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Logemann JA. Evaluation and treatment of swallowing disorders. 2nd ed. Austin: Pro-ed; 1998.Google Scholar
  2. 2.
    Miller AJ. The neuroscientific principles of swallowing and dysphagia. San Diego: Singular Publishing Group Inc.; 1999.Google Scholar
  3. 3.
    Crary MA, Groher ME. Introduction to adult swallowing disorders. St. Louis: Elsevier Science; 2003.Google Scholar
  4. 4.
    Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA, Kahrilas PJ, Smith CH. Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older men. J Speech Lang Hear Res. 2000;43:1264–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Achem SR, Devault KR. Dysphagia in aging. J Clin Gastroenterol. 2005;39:357–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Akgün KM, Crothers K, Pisani M. Epidemiology and management of common pulmonary diseases in older persons. J Gerontol A Biol Sci Med Sci. 2012;67:276–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Cook IJ, Kahrilas PJ. American Gastroenterological Association technical review on management of oropharyngeal dysphagia. Gastroenterology. 1999;116:455–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Clavé P, Terré R, de Kraa M, Serra M. Approaching oropharyngeal dysphagia. Rev Esp Enferm Dig. 2004;96:119–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Clavé P, Almirall J, Esteve A, Verdaguer A, Berenguer M, Serra-Prat M. Oropharyngeal dysphagia—a team approach to prevent and treat complications. In: Taylor S, editor. Hospital Healthcare Europe 2005/2006. London: Campden Publishing Ltd.; 2005. p. N5–N8.Google Scholar
  10. 10.
    Logemann JA. Manual for the videofluorographic study of swallowing. 2nd ed. Austin: Pro-Ed; 2005.Google Scholar
  11. 11.
    Tamm I, Kortsik C. Severe barium sulfate aspiration into the lung: clinical presentation, prognosis and therapy. Respiration. 1999;66:81–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Yabunaka K, Sanada H, Sanada S, Konishi H, Hashimoto T, Yatake H, Yamamoto K, Katsuda T, Ohue M. Sonographic assessment of hyoid bone movement during swallowing: a study of normal adults with advancing age. Radiol Phys Technol. 2011;4:73–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Hafner G, Neuhuber A, Hirtenfelder S, Schmedler B, Eckel HE. Fiberoptic endoscopic evaluation of swallowing in intensive care unit patients. Eur Arch Otorhinolaryngol. 2008;265:441–6.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Cichero JAY, Murdoch BE. Acoustic signature of the normal swallow: characterization by age, gender, and bolus volume. Ann Otol Rhinol Laryngol. 2002;111:623–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Salén B, Zakrisson JE. Electromyogram of the tensor tympani muscle in man during swallowing. Acta Otolaryngol. 1978;85:453–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Abe S, Kaneko H, Nakamura Y, Watanabe Y, Shintani M, Hashimoto M, Yamane G, Ide Y, Shimono M, Ishikawa T, Yamada Y, Hayashi T. Experimental device for detecting laryngeal movement during swallowing. Bull Tokyo Dent Coll. 2002;43:199–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Matsumi H, Koshino H, Hirai T, Yokoyama Y, Ikeda Y. Evaluation of swallowing function using ultrasound diagnostic methods. Prosthodont Res Pract. 2005;4:1–8.CrossRefGoogle Scholar
  18. 18.
    Hori K, Ono T, Tamine K, Kondo J, Hamanaka S, Maeda Y, Dong J, Hatsuda M. Newly developed sensor sheet for measuring tongue pressure during swallowing. J Prosthodont Res. 2009;53:28–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Ekberg O. The normal movements of the hyoid bone during swallow. Invest Radiol. 1986;21:408–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim Y, McCullough GH. Maximum hyoid displacement in normal swallowing. Dysphagia. 2008;23:274–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Palmer JB, Rudin NJ, Lara G, Crompton AW. Coordination of mastication and swallowing. Dysphagia. 1992;7:187–200.CrossRefPubMedGoogle Scholar
  22. 22.
    Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Physiol. 1989;257:748–59.Google Scholar
  23. 23.
    Vandaele DJ, Perlman AL, Cassell MD. Intrinsic fibre architecture and attachments of the human epiglottis and their contributions to the mechanism of deglutition. J Anat. 1995;186:1–15.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Measurement Specialties, Inc. (2008) Piezo film sensors technical manual. Accessed 13 Oct 2014.
  25. 25.
    Kawai H. The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys. 1969;8:975.CrossRefGoogle Scholar
  26. 26.
    Kanda K, Saito T, Iga Y, Higuchi K, Maenaka K. Influence of parasitic capacitance on output voltage for series-connected thin-film piezoelectric devices. Sensors. 2012;12:16673–84.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL. Mechanical-electrical triggers and sensors using piezoelectric microwires/nanowires. Nano Lett. 2008;8(9):2725–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Toyosato A, Nomura S, Igarashi A, Ii N, Nomura A. A relation between the piezoelectric pulse transducer waveforms and food bolus passage during pharyngeal phase of swallow. Prosthodont Res Pract. 2007;6:272–5.CrossRefGoogle Scholar
  29. 29.
    Youmans SR, Stierwalt JA. Normal swallowing acoustics across age, gender, bolus viscosity, and bolus volume. Dysphagia. 2011;26:374–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Dantas RO, Alves LM, Santos CM, de Cassiani A. Possible interaction of gender and age on human swallowing behavior. Arq Gastroenterol. 2011;48:195–8.CrossRefPubMedGoogle Scholar
  31. 31.
    McCullough GH, Wertz RT, Rosenbek JC, Mills RH, Webb WG, Ross KB. Inter- and intrajudge reliability for videofluoroscopic swallowing evaluation measures. Dysphagia. 2001;16:110–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Kendall KA, McKenzie S, Leonard RJ, Gonçalves MI, Walker A. Timing of events in normal swallowing: a videofluoroscopic study. Dysphagia. 2000;15:74–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Ishida R, Palmer JB, Hiiemae KM. Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia. 2002;17:262–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ, Brasseur JG, Cook IJ, Lang IM. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol. 1990;258:675–81.Google Scholar
  35. 35.
    Sonies BC, Parent LJ, Morrish K, Baum BJ. Durational aspects of the oral-pharyngeal phase of swallow in normal adults. Dysphagia. 1988;3:1–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Kendall KA, Leonard RJ. Hyoid movement during swallowing in older patients with dysphagia. Arch Otolaryngol Head Neck Surg. 2001;127:1224–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson ER, McKenzie SW, Sievers A. Aspiration pneumonia in stroke. Arch Phys Med Rehabil. 1993;74:973–6.PubMedGoogle Scholar
  38. 38.
    Johnson ER, McKenzie SW, Rosenquist CJ, Lieberman JS, Sievers AE. Dysphagia following stroke: quantitative evaluation of pharyngeal transit times. Arch Phys Med Rehabil. 1992;73:419–23.PubMedGoogle Scholar
  39. 39.
    Ueda N, Nohara K, Kotani Y, Tanaka N, Okuno K, Sakai T. Effects of the bolus volume on hyoid movements in normal individuals. J Oral Rehabil. 2013;40:491–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Taniguchi H, Tsukada T, Ootaki S, Yamada Y, Inoue M. Correspondence between food consistency and suprahyoid muscle activity, tongue pressure, and bolus transit times during the oropharyngeal phase of swallowing. J Appl Physiol. 2008;105:791–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Park T, Kim Y, McCullough G. Oropharyngeal transition of the bolus in post-stroke patients. Am J Phys Med Rehabil. 2013;92:320–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Sonies BC, Wang C, Sapper DJ. Evaluation of normal and abnormal hyoid bone movement during swallowing by use of ultrasound duplex-Doppler imaging. Ultrasound Med Biol. 1996;22:1169–75.CrossRefPubMedGoogle Scholar
  43. 43.
    Bingjie L, Tong Z, Xinting S, Jianmin X, Guijun J. Quantitative videofluoroscopic analysis of penetration–aspiration in poststroke patients. Neurol India. 2010;58:42–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Chi-Fishman G, Sonies BC. Effects of systematic bolus viscosity and volume changes on hyoid movement kinematics. Dysphagia. 2002;17:278–87.CrossRefPubMedGoogle Scholar
  45. 45.
    Perry JL, Bae Y, Kuehn DP. Effect of posture on deglutitive biomechanics in healthy individuals. Dysphagia. 2012;27:70–80.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuichiro Sogawa
    • 1
  • Shinji Kimura
    • 1
    Email author
  • Toru Harigai
    • 1
  • Naoki Sakurai
    • 2
  • Akira Toyosato
    • 3
  • Taro Nishikawa
    • 1
  • Makoto Inoue
    • 4
  • Akira Murasawa
    • 5
  • Naoto Endo
    • 1
  1. 1.Rehabilitation CenterNiigata University Medical and Dental HospitalNiigata-ShiJapan
  2. 2.Division of Comprehensive Prosthodontics, Department of Tissue Regeneration and Reconstruction, Course for Oral Life ScienceNiigata University Graduate School of Medical and Dental SciencesNiigata-ShiJapan
  3. 3.Heart Dental ClinicNiigata-ShiJapan
  4. 4.Division of Dysphagia RehabilitationNiigata University Graduate School of Medical and Dental SciencesNiigata-ShiJapan
  5. 5.Department of Rehabilitation MedicineNiigata Rheumatic CenterShibata-ShiJapan

Personalised recommendations