Skip to main content

Advertisement

Log in

Videofluoroscopic Validation of a Translational Murine Model of Presbyphagia

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Presbyphagia affects approximately 40 % of otherwise healthy people over 60 years of age. Hence, it is a condition of primary aging rather than a consequence of primary disease. This distinction warrants systematic investigations to understand the causal mechanisms of aging versus disease specifically on the structure and function of the swallowing mechanism. Toward this goal, we have been studying healthy aging C57BL/6 mice (also called B6), the most popular laboratory rodent for biomedical research. The goal of this study was to validate this strain as a model of presbyphagia for translational research purposes. We tested two age groups of B6 mice: young (4–7 months; n = 16) and old (18–21 months; n = 11). Mice underwent a freely behaving videofluoroscopic swallow study (VFSS) protocol developed in our lab. VFSS videos (recorded at 30 frames per second) were analyzed frame-by-frame to quantify 15 swallow metrics. Six of the 15 swallow metrics were significantly different between young and old mice. Compared to young mice, old mice had significantly longer pharyngeal and esophageal transit times (p = 0.038 and p = 0.022, respectively), swallowed larger boluses (p = 0.032), and had a significantly higher percentage of ineffective primary esophageal swallows (p = 0.0405). In addition, lick rate was significantly slower for old mice, measured using tongue cycle rate (p = 0.0034) and jaw cycle rate (p = 0.0020). This study provides novel evidence that otherwise healthy aging B6 mice indeed develop age-related changes in swallow function resembling presbyphagia in humans. Specifically, aging B6 mice have a generally slow swallow that spans all stages of swallowing: oral, pharyngeal, and esophageal. The next step is to build upon this foundational work by exploring the responsible mechanisms of presbyphagia in B6 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103:823–9.

    CAS  PubMed  Google Scholar 

  2. Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract. 2009;24:395–413.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Robbins J, Bridges AD, Taylor A. Oral, pharyngeal and esophageal motor function in aging. GI Motility online. Nature.com. London: Macmillan Publishers Limited; 2006.

    Google Scholar 

  4. Cook IJ, Weltman MD, Wallace K, Shaw DW, McKay E, Smart RC, Butler SP. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol. 1994;266:G972–7.

    CAS  PubMed  Google Scholar 

  5. Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A. 2005;60:391–5.

    Article  Google Scholar 

  6. Tracy JF, Logemann JA, Kahrilas PJ, Jacob P, Kobara M, Krugler C. Preliminary observations on the effects of age on oropharyngeal deglutition. Dysphagia. 1989;4:90–4.

    Article  CAS  PubMed  Google Scholar 

  7. Bisch EM, Logemann JA, Rademaker AW, Kahrilas PJ, Lazarus CL. Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res. 1994;37:1041–59.

    Article  CAS  PubMed  Google Scholar 

  8. Lazarus CL, Logemann JA, Rademaker AW, Kahrilas PJ, Pajak T, Lazar R, Halper A. Effects of bolus volume, viscosity, and repeated swallows in nonstroke subjects and stroke patients. Arch Phys Med Rehabil. 1993;74:1066–70.

    Article  CAS  PubMed  Google Scholar 

  9. Logemann JA, Kahrilas PJ, Cheng J, Pauloski BR, Gibbons PJ, Rademaker AW, Lin S. Closure mechanisms of laryngeal vestibule during swallow. Am J Physiol. 1992;262:G338–44.

    CAS  PubMed  Google Scholar 

  10. Ekberg O, Feinberg MJ. Altered swallowing function in elderly patients without dysphagia: radiologic findings in 56 cases. AJR Am J Roentgenol. 1991;156:1181–4.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshikawa M, Yoshida M, Nagasaki T, Tanimoto K, Tsuga K, Akagawa Y, Komatsu T. Aspects of swallowing in healthy dentate elderly persons older than 80 years. J Gerontol A. 2005;60:506–9.

    Article  Google Scholar 

  12. Zboralske FF, Amberg JR, Soergel KH. Presbyesophagus: cineradiographic manifestations. Radiology. 1964;82:463–7.

    Article  CAS  PubMed  Google Scholar 

  13. Aly YA, Abdel-Aty H. Normal oesophageal transit time on digital radiography. Clin Radiol. 1999;54:545–9.

    Article  CAS  PubMed  Google Scholar 

  14. Soergel KH, Zboralske FF, Amberg JR. Presbyesophagus: esophageal motility in nonagenarians. J Clin Invest. 1964;43:1472–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology. 1994;107:396–402.

    CAS  PubMed  Google Scholar 

  16. Humbert IA, Fitzgerald ME, McLaren DG, Johnson S, Porcaro E, Kosmatka K, Hind J, Robbins J. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44:982–91.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Butler SG, Maslan J, Stuart A, Leng X, Wilhelm E, Lintzenich CR, Williamson J, Kritchevsky SB. Factors influencing bolus dwell times in healthy older adults assessed endoscopically. Laryngoscope. 2011;121:2526–34.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Butler SG, Stuart A, Kemp S. Flexible endoscopic evaluation of swallowing in healthy young and older adults. Ann Otol Rhinol Laryngol. 2009;118:99–106.

    Article  PubMed  Google Scholar 

  19. Butler SG, Stuart A, Markley L, Rees C. Penetration and aspiration in healthy older adults as assessed during endoscopic evaluation of swallowing. Ann Otol Rhinol Laryngol. 2009;118:190–8.

    Article  PubMed  Google Scholar 

  20. Robbins J, Coyle J, Rosenbek J, Roecker E, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration–aspiration scale. Dysphagia. 1999;14:228–32.

    Article  CAS  PubMed  Google Scholar 

  21. Grishaw EK, Ott DJ, Frederick MG, Gelfand DW, Chen MY. Functional abnormalities of the esophagus: a prospective analysis of radiographic findings relative to age and symptoms. AJR Am J Roentgenol. 1996;167:719–23.

    Article  CAS  PubMed  Google Scholar 

  22. Kays S, Robbins J. Effects of sensorimotor exercise on swallowing outcomes relative to age and age-related disease. Semin Speech Lang. 2006;27:245–59.

    Article  PubMed  Google Scholar 

  23. Humbert IA, Robbins J. Dysphagia in the elderly. Phys Med Rehabil Clin N Am. 2008;19:853–66.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bureau USC: Statistical Abstract of the United States: 2012. 2012.

  25. Howden CW. Management of acid-related disorders in patients with dysphagia. Am J Med. 2004;117(Suppl 5A):44S–8S.

    PubMed  Google Scholar 

  26. Seshamani M, Kashima M. Age-related swallowing changes. 5th ed. Philadelphia: Mosby-Elsevier; 2010.

    Google Scholar 

  27. Roy N, Stemple J, Merrill RM, Thomas L. Epidemiology of voice disorders in the elderly: preliminary findings. Laryngoscope. 2007;117:628–33.

    Article  PubMed  Google Scholar 

  28. Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE. The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res. 2013;41:D885–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Battey J, Peterson J. Model organisms for biomedical research, trans-NIH mouse initiatives. 2014.

  30. Abdelkafy WM, Smith JQ, Henriquez OA, Golub JS, Xu J, Rojas M, Brigham KL, Johns MM. Age-related changes in the murine larynx: initial validation of a mouse model. Ann Otol Rhinol Laryngol. 2007;116:618–22.

    Article  PubMed  Google Scholar 

  31. Laboratory J. Genotyping protocol for SOD. 2013: from http://jaxmice.jax.org/pub-cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523, 2009.

  32. Jackson L. Genotyping protocol for SOD. 2013: from http://jaxmice.jax.org/pub-cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523, 2009.

  33. Laboratory TJ. JAX Mice Database. http://jaxmice.jax.org/strain/000664.html, 2014.

  34. Aging NIo. Aged Rodent Colonies Handbook: Available Strains.

  35. Rt B. Videofluoroscopic characterization of swallowing impairment in mouse models of amyotrophic lateral sclerosis and advanced aging. Columbia: Communication Science and Disorders: University of Missouri; 2014.

    Google Scholar 

  36. Lever TE, Gorsek A, Cox KT, O’Brien KF, Capra NF, Hough MS, Murashov AK. An animal model of oral dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2009;24:180–95.

    Article  PubMed  Google Scholar 

  37. Lever TE, Simon E, Cox KT, Capra NF, O’Brien KF, Hough MS, Murashov AK. A mouse model of pharyngeal dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2010;25:112–26.

    Article  PubMed  Google Scholar 

  38. Carvalho TC, Gerstner GE. Licking rate adaptations to increased mandibular weight in the adult rat. Physiol Behav. 2004;82:331–7.

    Article  CAS  PubMed  Google Scholar 

  39. Logemann JA, Larsen K. Oropharyngeal dysphagia: pathophysiology and diagnosis for the anniversary issue of diseases of the esophagus. Dis Esophagus. 2012;25:299–304.

    Article  CAS  PubMed  Google Scholar 

  40. Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol. 2007;21:563–73.

    Article  PubMed  Google Scholar 

  41. Martin-Harris B, Jones B. The videofluorographic swallowing study. Phys Med Rehabil Clin N Am. 2008;19:769–85.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lever TE, Braun SM, Brooks RT, Harris RA, Littrell LL, Neff RM, Hinkel CJ, Allen MJ, Ulsas MA. Adapting human videofluoroscopic swallow study methods to detect and characterize dysphagia in murine disease models. J Vis Exp, in press, 2014.

  43. Berry RJ. The natural history of the house mouse. Field Stud. 1970;3:219–62.

    Google Scholar 

  44. Emond M, Faubert S, Perkins M. Social conflict reduction program for male mice. Contemp Top Lab Anim Sci. 2003;42:24–6.

    CAS  PubMed  Google Scholar 

  45. Scott JP. Agonistic behavior of mice and rats: a review. Am Zool. 1966;6:683–701.

    CAS  PubMed  Google Scholar 

  46. Van Loo P, Kruitwagon C, Van Zutphen L, Koolhaas J, Baumans V. Modulation of aggression in male mice: influence of cage cleaning regime and scent markers. Anim Welf. 2000;9:281–95.

    Google Scholar 

  47. Russell JA, Ciucci MR, Hammer MJ, Connor NP. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease. Dysphagia. 2013;28:95–104.

    Article  PubMed Central  PubMed  Google Scholar 

  48. ADA. NDDTF: National Dysphagia Diet: Standardization for Optimal Care. Chicago: American Dietetic Association; 2002.

    Google Scholar 

  49. Worl J, Neuhuber WL. Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol. 2005;123:117–30.

    Article  PubMed  Google Scholar 

  50. Boughter JD Jr, Mulligan MK, John SJ, Tokita K, Lu L, Heck DH, Williams RW. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS One. 2012;7:e38169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shock LA, Gallemore BC, Hinkel CJ, Szewczyk MM, Hopewell BL, Allen MJ, Thombs LA, Lever TE. Improving the utility of laryngeal adductor reflex testing: a translational tale of mice and men. Otolaryngology, in press.

  52. Agrawal A, Rengarajan S, Adler KB, Ram A, Ghosh B, Fahim M, Dickey BF. Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma. J Appl Physiol. 1985;102(399–405):2007.

    Google Scholar 

  53. Agrawal A, Singh SK, Singh VP, Murphy E, Parikh I. Partitioning of nasal and pulmonary resistance changes during noninvasive plethysmography in mice (1985). J Appl Physiol. 2008;105:1975–9.

    Article  PubMed  Google Scholar 

  54. D’Ottaviano FG, Linhares Filho TA, Andrade HM, Alves PC, Rocha MS. Fiberoptic endoscopy evaluation of swallowing in patients with amyotrophic lateral sclerosis. Braz J Otorhinolaryngol. 2013;79:349–53.

    Article  PubMed  Google Scholar 

  55. Inamoto Y, Saitoh E, Okada S, Kagaya H, Shibata S, Ota K, Baba M, Fujii N, Katada K, Wattanapan P, Palmer JB. The effect of bolus viscosity on laryngeal closure in swallowing: kinematic analysis using 320-row area detector CT. Dysphagia. 2013;28:33–42.

    Article  PubMed  Google Scholar 

  56. Sugiyama N, Nishiyama E, Nishikawa Y, Sasamura T, Nakade S, Okawa K, Nagasawa T, Yuki A. A novel animal model of dysphagia following stroke. Dysphagia. 2014;29:61–7.

    Article  PubMed  Google Scholar 

  57. Ciucci MR, Russell JA, Schaser AJ, Doll EJ, Vinney LM, Connor NP. Tongue force and timing deficits in a rat model of Parkinson disease. Behav Brain Res. 2011;222:315–20.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Ciucci MR, Schaser AJ, Russell JA. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease. Behav Brain Res. 2013;252:239–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Plowman EK, Kleim JA. Behavioral and neurophysiological correlates of striatal dopamine depletion: a rodent model of Parkinson’s disease. J Commun Disord. 2011;44:549–56.

    PubMed  Google Scholar 

  60. German RZ, Crompton AW, Levitch LC, Thexton AJ. The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool. 1992;261:322–30.

    Article  CAS  PubMed  Google Scholar 

  61. Thexton AJ, Crompton AW, German RZ. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool. 1998;280:327–43.

    Article  CAS  PubMed  Google Scholar 

  62. Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Thexton AJ, German RZ. The effect of unilateral superior laryngeal nerve lesion on swallowing threshold volume. Laryngoscope. 2013;123:1942–7.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Holman SD, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Griffioen AM, Inokuchi H, Lukasik SL, German RZ. Development, reliability, and validation of an infant mammalian penetration-aspiration scale. Dysphagia. 2013;28:178–87.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We graciously thank past members of the Lever Lab who contributed to preliminary data collection using non-radiographic lick rate methods (Danarae Aleman, Laura Powell, and Andries Ferreira). We also acknowledge Roderic Schlotzhauer from the University of Missouri Physics Machine Shop for design input and fabrication of the VFSS test chambers that were essential to this study. We sincerely thank Dr. Fu-Hung Hsieh’s lab at the University of Missouri Department of Bioengineering for assistance in gathering rheological data. Our highest gratitude extends to Dr. Grace Pavlath (Emory University), who facilitated our acquisition of the fluoroscope used to collect data for this study. This study was funded by NIH/NIDCD (R03DC010895, TE Lever), NIH/NINDS (R21N5084870-01, GK Pavlath), Otolaryngology – Head and Neck Surgery start-up funds (TE Lever), MU PRIME Fund (TE Lever), Mizzou Advantage (TE Lever), and the MU Center on Aging (TE Lever).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa E. Lever.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lever, T.E., Brooks, R.T., Thombs, L.A. et al. Videofluoroscopic Validation of a Translational Murine Model of Presbyphagia. Dysphagia 30, 328–342 (2015). https://doi.org/10.1007/s00455-015-9604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-015-9604-7

Keywords

Navigation