Skip to main content

Automated Acoustic Analysis in Detection of Spontaneous Swallows in Parkinson’s Disease

Abstract

Acoustic monitoring of swallow frequency has become important as the frequency of spontaneous swallowing can be an index for dysphagia and related complications. In addition, it can be employed as an objective quantification of ingestive behavior. Commonly, swallowing complications are manually detected using videofluoroscopy recordings, which require expensive equipment and exposure to radiation. In this study, a noninvasive automated technique is proposed that uses breath and swallowing recordings obtained via a microphone located over the laryngopharynx. Nonlinear diffusion filters were used in which a scale-space decomposition of recorded sound at different levels extract swallows from breath sounds and artifacts. This technique was compared to manual detection of swallows using acoustic signals on a sample of 34 subjects with Parkinson’s disease. A speech language pathologist identified five subjects who showed aspiration during the videofluoroscopic swallowing study. The proposed automated method identified swallows with a sensitivity of 86.67 %, a specificity of 77.50 %, and an accuracy of 82.35 %. These results indicate the validity of automated acoustic recognition of swallowing as a fast and efficient approach to objectively estimate spontaneous swallow frequency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Pehlivan M, Yüceyar N, Ertekin C, Çelebi G, Ertaş M, Kalayci T, Aydogdu I. An electronic device measuring the frequency of spontaneous swallowing: digital phagometer. Dysphagia. 1996;11(4):259–64.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Santamato A, Panza F, Solfrizzi V, Russo A, Frisardi V, Megna M, Ranieri M, Fiore P. Acoustic analysis of swallowing sounds: a new technique for assessing dysphagia. J Rehabil Med. 2009;41(8):639–45.

    PubMed  Article  Google Scholar 

  3. 3.

    Shirazi SS, Buchel C, Daun R, Lenton L, Moussavi Z. Detection of swallows with silent aspiration using swallowing and breath sound analysis. Med Biol Eng Comput. 2012;50(12):1261–8.

    Article  Google Scholar 

  4. 4.

    Steele CM, Sejdić E, Chau T. Noninvasive detection of thin-liquid aspiration using dual-axis swallowing accelerometry. Dysphagia. 2013;28(1):105–12.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Lazareck LJ, Moussavi ZM. Classification of normal and dysphagic swallows by acoustical means. IEEE Trans Biomed Eng. 2004;51(12):2103–12.

    PubMed  Article  Google Scholar 

  6. 6.

    Yadollahi A, Moussavi ZM. A model for normal swallowing sounds generation based on wavelet analysis. 2008 CCECE, 21st IEEE Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Ontario, Canada, 4–7 May 2008.

  7. 7.

    Shirazi SS, Moussavi ZM. Acoustical modeling of swallowing mechanism. IEEE Trans Biomed Eng. 2011;58(1):81–7.

    PubMed  Article  Google Scholar 

  8. 8.

    Aboofazeli M, Moussavi Z. Analysis of swallowing sounds using hidden Markov models. Med Biol Eng Comput. 2008;46(4):307–14.

    PubMed  Article  Google Scholar 

  9. 9.

    Makeyev O, Sazonov E, Schuckers S, Lopez-Meyer P, Baidyk T, Melanson E, Neuman M. Recognition of swallowing sounds using time-frequency decomposition and limited receptive area neural classifier. Appl Innov Intell Syst. 2008;XVI:33–46.

    Google Scholar 

  10. 10.

    Aboofazeli M, Moussavi Z. Swallowing sound detection using hidden Markov modeling of recurrence plot features. Chaos Solitons Fractals. 2009;39(2):778–83.

    Article  Google Scholar 

  11. 11.

    Sazonov ES, Makeyev O, Schuckers S, Lopez-Meyer P, Melanson EL, Neuman MR. Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior. IEEE Trans Biomed Eng. 2010;57(3):626–33.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Damouras S, Sejdic E, Steele CM, Chau T. An online swallow detection algorithm based on the quadratic variation of dual-axis accelerometry. IEEE Trans Signal Process. 2010;58(6):3352–9.

    Article  Google Scholar 

  13. 13.

    Aboofazeli M, Moussavi Z. Automated extraction of swallowing sounds using a wavelet-based filter. EMBS’06 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, August 31, September 3, 2006, vol 1, pp 5607–10.

  14. 14.

    Aboofazeli M, Moussavi Z. Automated classification of swallowing and breath sounds. EMBS’04 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Conference Proceedings: Linkages for Innovation in Biomedicine: 1–5 September 2004, San Francisco, vol 6, pp 3816–19.

  15. 15.

    Amft O, Troster G. Methods for detection and classification of normal swallowing from muscle activation and sound. Pervasive Health Conference and Workshops, Innsbruck, Austria, November 29, December 1, 2006, pp 1–10.

  16. 16.

    Crary MA, Sura L, Carnaby G. Validation and demonstration of an isolated acoustic recording technique to estimate spontaneous swallow frequency. Dysphagia. 2013;28(1):86–94.

    PubMed  Article  Google Scholar 

  17. 17.

    Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N, Melanson EL, Neuman M. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior. Physiol Meas. 2008;29(5):525.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Amft O, Troster G. On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive Comput. 2009;8(2):62–70.

    Article  Google Scholar 

  19. 19.

    Mitchell TM. Machine learning. WCB. Boston: McGraw-Hill Science/Engineering/Math; 1997.

    Google Scholar 

  20. 20.

    Weickert J. A review of nonlinear diffusion filtering. In: Scale-Space Theory in Computer Vision, First International Conference, Scale-Space ’97, Utrecht, The Netherlands, July 2–4, 1997, Proceedings (Lecture Notes in Computer Science). Berlin: Springer-Verlag, 1997, No. 1252, pp 1–128.

  21. 21.

    Ertekin C. Voluntary versus spontaneous swallowing in man. Dysphagia. 2011;26(2):183–92.

    PubMed  Article  Google Scholar 

  22. 22.

    Hårdemark Cedborg AI, Sundman E, Bodén K, Hedström HW, Kuylenstierna R, Ekberg O, Eriksson LI. Co-ordination of spontaneous swallowing with respiratory airflow and diaphragmatic and abdominal muscle activity in healthy adult humans. Exp Physiol. 2009;94(4):459–68.

    PubMed  Article  Google Scholar 

  23. 23.

    Cherniack NS. Inspirational lessons from watching swallows. Exp Physiol. 2009;94(4):398–9.

    PubMed  Article  Google Scholar 

  24. 24.

    Martin-Harris B. Coordination of respiration and swallowing. GI Motility Online, 16 May 2006. doi: 10.1038/gimo10. Available at http://www.nature.com/gimo/contents/pt1/full/gimo10.html.

  25. 25.

    Golabbakhsh M.Tracheal breath sound relationship with respiratory flow: modeling the effect of age and airflow estimation. Dissertation, University of Manitoba, 2004.

  26. 26.

    Yadollahi A, Moussavi ZM. A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Trans Biomed Eng. 2006;53(4):662–8.

    PubMed  Article  Google Scholar 

  27. 27.

    Crary M, Carnaby-Mann G, Sura L, Sia I. Spontaneous swallow frequency as a screening protocol for dysphagia in acute stroke. Neurology. 2013;80(S32):004.

    Google Scholar 

  28. 28.

    Crary MA, Carnaby GD, Sia I, Khanna A, Waters MF. Spontaneous swallowing frequency has potential to identify dysphagia in acute stroke. Stroke. 2013;44(12):3452–7.

    PubMed  Article  Google Scholar 

  29. 29.

    McAlpine B, Vankampen D. Clinical engineering and information technology: Working together to implement device integration. Biomed Instrum Technol. 2011;45(6):445–9.

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marzieh Golabbakhsh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golabbakhsh, M., Rajaei, A., Derakhshan, M. et al. Automated Acoustic Analysis in Detection of Spontaneous Swallows in Parkinson’s Disease. Dysphagia 29, 572–577 (2014). https://doi.org/10.1007/s00455-014-9547-4

Download citation

Keywords

  • Swallowing assessment
  • Acoustic
  • Spontaneous swallow
  • Swallow frequency
  • Deglutition
  • Deglutition disorders